This document set is applicable to the following part number configurations:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Kit Configuration</th>
<th>Instrument</th>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM202</td>
<td>TM202</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TM202B</td>
<td>TM202</td>
<td>1 X A200-HMB</td>
<td></td>
</tr>
<tr>
<td>TM202S</td>
<td>TM202</td>
<td>1 X A200-HMS</td>
<td></td>
</tr>
<tr>
<td>TM202R</td>
<td>TM202</td>
<td>1 X A200-HMR</td>
<td></td>
</tr>
</tbody>
</table>
The following checklist outlines the required articles for all TM202X products:

<table>
<thead>
<tr>
<th>Documentation</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction (this document)</td>
<td>S200-TM202X-001</td>
</tr>
<tr>
<td>Warranty Statement</td>
<td>S200-AWS</td>
</tr>
<tr>
<td>Installation Instructions</td>
<td>S200-TM202X-002</td>
</tr>
<tr>
<td>Intensity Control Installation Options</td>
<td>S200-DDC-INST</td>
</tr>
<tr>
<td>Wiring and Installation Schematic</td>
<td>S200-TM202X-003</td>
</tr>
<tr>
<td>Human Interface Definition</td>
<td>S200-HID</td>
</tr>
<tr>
<td>Instrument Setup</td>
<td>S200-TM202X-004</td>
</tr>
<tr>
<td>Operations Guide</td>
<td>S200-TM202X-005</td>
</tr>
<tr>
<td>Product Specifications</td>
<td>S200-TM202X-006</td>
</tr>
<tr>
<td>Installation Compliance</td>
<td>S200-TM202X-007</td>
</tr>
<tr>
<td>Instructions for Continued Airworthiness</td>
<td>S200-ICA</td>
</tr>
<tr>
<td>Flight Manual Supplement</td>
<td>S200-FMS (If applicable)</td>
</tr>
<tr>
<td>Authorized Release Certificate</td>
<td>FORM ONE</td>
</tr>
<tr>
<td>Permission to Use STC</td>
<td>S200-PTU</td>
</tr>
<tr>
<td>Canadian STC and Eligibility List</td>
<td>STC & S200-CEL</td>
</tr>
<tr>
<td>FAA STC and Approved Model List</td>
<td>STC & S200-AML</td>
</tr>
</tbody>
</table>

Components

- TM202 Instrument and harness
- 2 X A200-HMx rotational speed sensors as required
- 4 X Mounting Screws
The Fastest Way To Install And Start Using This Product

NOTE: This product is certified as a primary replacement, new or secondary instrument only when installation is performed in accordance with the documented instructions and procedures.

1. Review the Warranty Statement before performing any tasks. Do not remove the instrument from the sealed package until you agree with the stated terms.

2. If this instrument is to be installed in a certified aircraft, verify that the aircraft model is listed on the Eligibility List (Canadian registered aircraft) or the Approved Model List (USA and all other countries).

 If it is NOT listed, contact your local authority and obtain the necessary requirements or approvals before proceeding further.

 For all other vehicles, including experimental aircraft continue with Step 3.

3. Follow the Installation Instructions exactly as noted, referring to the Wiring Diagram as and when required. Note: The installation process has been optimized based on the sequence of components to be installed. Installing the product in any other way will, in all likelihood, take longer and be more complex.

 Ensure that one of the Intensity Control options has been installed in accordance with document # S200-DDC-INST.

5. Validate that all functions perform as outlined in the Operations Guide.

6. Complete all regulatory documentation, if required.
NO NONSENSE WARRANTY

Our warranty policy is simple …. It is even written in plain English!

Please read it BEFORE DOING ANYTHING WITH YOUR NEW INSTRUMENT!

If you require technical support when installing your instrument please call our Technical Support department directly on 416-628-0725

We will:

• Repair or replace (at our discretion) any instrument which becomes defective within a period of 12 (twelve) months of manufacture date. You will pay for the shipping costs to return the instrument to us and we will pay for the shipping costs to return the instrument to you;

• Replace all instruments that fail out of warranty for a flat rate of 50% of the cost of a new instrument, at the time of the failure.

We are not:

• Liable for any costs associated with the installation or removal of any of our instruments, irrespective of the cause;

• Liable for any misuse or non-use of the instrument in whatever form.

We will not:

• Repair or replace your instrument free of charge, under warranty, if it has not been installed by an appropriately licensed person.

If you do not agree with ANY of the above statements, return your new instrument to us immediately for a FULL refund LESS shipping costs.

ALL RETURNS REQUIRE RETURN MATERIAL AUTHORIZATIONS (RMA). WE DO NOT ACCEPT RETURNS WITHOUT RMA NUMBERS. CALL 416-628-0725 FOR AUTHORIZATION.
1. Sensor Installation:
 a. Install one sensor, of appropriate type, on each engine,
 b. For Bendix type magnetos install hall effect sensor P/N A200-HMB or P/N A200-HMR, or
 c. For Slick/Unison type magnetos install hall effect sensor P/N A200-HMS,
 d. in accordance with the manufacturer supplied instructions.

2. Connect the wiring supplied with the DB25 interface connector in accordance with the TM202X Wiring and Installation Schematic. DO NOT ATTACH THE CONNECTOR TO THE INSTRUMENT UNTIL ALL WIRING HAS BEEN CONNECTED.

3. Select the instrument location in the aircraft panel.

4. Ensure that the aircraft master switch and/or power to the instrument is OFF.

5. Attach the DB25 connector to the instrument. Ensure that the plug is fully inserted into the instrument. Finger tighten the two plug locking screws, then tighten 1/8 turn using a screwdriver. DO NOT OVERTIGHTEN.

6. If the instrument is to be installed to the right of the pilot’s field of view, the DB25 connector on the rear of the instrument MUST be closest to the bottom of the instrument panel. Proceed with step 8.

7. If the instrument is to be installed in front of or to the left of the pilot’s field of view the DB25 connector on the rear of the instrument MUST be closest to the top of the instrument panel.

8. Install the instrument in the panel, attaching with four 6-32 X 3/8” screws.

9. Initial Power Up Sequence:
 a. Adjust the instrument intensity control for maximum intensity.
 b. Apply power to the instrument.
 c. The instrument display will light up.
 d. The display may be inverted at this point. Ignore the orientation at this time.
 e. Turn the instrument OFF.

10. If the instrument display does not light up:
 a. Ensure intensity control is set for maximum.
 b. Turn off power.
 c. Disconnect the DB25 connector from the instrument.
 d. Check intensity control.
 e. Check the wiring installation and breaker or fuse.

11. Proceed to “Instrument Setup”.
Connection to Panel Rheostat

To harness connector BLUE BLACK
A200-DDC (HARNESS) BLUE BLACK
Panel rheostat (0V = min / Bus voltage = Max)
14V/28V Switched power
Ground

Connection to Independent Potentiometer Control

14V/28V Switched power
0V = min / Bus voltage = Max
BLUE
To Multiple Instruments

SPRU1031S23 (Not Supplied)
Ground

14V/28V Switched power
BLUE

SPRU1031S23 (Not Supplied)
Ground
TM202X Wiring and Installation Schematic

COLOR	**DESCRIPTION**
RED | 6V - 36V SUPPLY
BLACK | GROUND
RED | 14V/28V SUPPLY
BLUE | 0V/Bus Voltage - Variable Intensity Input
BLACK | Ground
YELLOW | RS-232 Data Output
ORANGE | External Alarm (Max 100mA Sink)

TWISTED SET (TAG LEFT TACH)
- **COLOR**
 - RED: RPM SENSOR RED (5V)
 - BLACK: RPM SENSOR BLACK (GROUND)
 - BLUE: RPM SENSOR BLUE (PULSE OUT)

TWISTED SET (TAG RIGHT TACH)
- **COLOR**
 - RED: RPM SENSOR RED (5V)
 - BLACK: RPM SENSOR BLACK (GROUND)
 - BLUE: RPM SENSOR BLUE (PULSE OUT)

INSTALLATION NOTES:
1. Allow for current drain of 0.1A (100mA)
2. Install using breaker or panel fuse
3. Maximum 7 instruments per 1A of breaker capacity
4. For multiple instrument installations install breakers to comply with redundancy requirements of AC 23.1309-1D Appendix 1
5. Connect all BLACK (GROUND) wires to the same ground point

ACCESSORY NOTES:
1. **Remove for 14V operation**
2. For Bendix magnetos use sensor P/N A200-HMB
3. For Slick/Unison magnetos use sensor P/N A200-HMS
4. For Bendix dual magnetos use sensor P/N A200-HMR

(C) Aerospace Logic Inc. (2008-2012)
All 200 Series instruments have been designed around a standard Human Interface protocol. This allows identical operation of the two panel switches between all instruments while still allowing multiple functions. This document is a generic outline of the functionality of the switches, based on the various functional states of the instrument.

Top Button

The top button is the action button. It invokes different screen displays, allows selection of values and increments or decrements values.

Examples of these actions are:

1. Moving between display screens
2. Selection of an action from a menu
3. Changing a value from within the setup menus
4. Entering a value during flight (clock instrument only)

Bottom Button

The bottom button is the navigation button. It will allow the cursor on the screen to move between allowable selections.

Examples of these actions are:

1. Selection of different cylinders (EGT and CHT) in the Single Cylinder mode
2. Selection of different tanks (Fuel Level)
3. Selection of limits and functional items from within the setup menus
4. Time field selection (clock instrument only)

There is one exception to the functionality of the bottom button. This is from the Primary Display (the screen that first comes on from power up). Pressing the button will display the instrument core status and support data.

General

1. Each specific instrument contains detailed button options within the Operations Guide.
2. During setup, instructions are provided on screen and use of the buttons is as noted in this document.
1. Before proceeding with the instrument setup you will require the following information, as it pertains to the aircraft that the instrument is being installed on:
 a. Minimum indicated RPM (the point at which tach time starts recording)
 b. Maximum operating RPM
 c. RPM redline

 If the engine has a defined “limited operations range” then you will also need:
 d. Minimum limited operations value
 e. Maximum limited operations value

2. This information must be obtained from a current, traceable source for the aircraft that the instrument is being installed on. Some possible sources are:
 a. Pilot Operating Handbook
 b. Maintenance Manual
 c. Aircraft Type Certificate Data Sheet
 d. Engine Type Certificate Data Sheet
 e. Manufacturer

3. Then, enter the correct parameters into the instrument as follows:
 a. Turn off the power to the instrument
 b. Press and hold both top and bottom buttons and turn on the power to the instrument.
 c. When instructed, release both buttons.
 d. In the setup menus, use the bottom button to navigate and the top button to select an option.
 e. Follow the onscreen instructions. **NOTE: Depending on the installation orientation of the instrument the display may initially be upside down. The first prompt in the setup is to press the button at the top of the instrument. This will orientate it correctly.** Continue with setup.
4. Once all steps of the setup have been completed, the instrument will provide the option to edit any data or to save and exit.

5. If the data entered is correct, choose the “OK” option to save the data and exit setup, otherwise choose “EDIT”.

6. Once the instrument has exited the setup it will restart. It is now ready for use.
1. **Power Up / Default Screen**

Displays both left and right engine RPM information. Colors are determined by the range values as set during installation.

- **Normal Operations**
 - **LEFT**: 2280 RPM
 - **RIGHT**: 2280 RPM

- **Redline Condition**
 - **LEFT**: 2280 RPM
 - **RIGHT**: 2940 RPM

If the engines have a limited operations range specified and either or both engine RPM is currently in that range, the display will use a yellow caution bar above the RPM indication.

Press the top button once to move to the next display.
2. Engine Time Display

Engine time MUST be set before the first flight as part of the installation and setup of the instrument.

The engine time screen will timeout and return to the default screen once the blue activity bar disappears.

![Engine Time Display Screenshots]

Press the top button to move to the next display or wait for the timeout period to expire.

3. Trend Graph

This screen provides a graphical display of left and right engine RPM.

RPM data is displayed with a miniature version of the bars as on the default screen and the actual RPM values.

![Trend Graph Screenshot]

The “Scan Interval” can be changed by pressing the bottom button.

To freeze the display, press the top button ONCE.

To continue displaying information in this mode, press the bottom button ONCE, OR, to return to the default screen, press the top button once.
4. Other Options

To display the instrument serial number and core information press and hold the bottom button when in the default screen.

WARNING

All engine operations are to be performed in accordance with the specific instructions pertaining to your aircraft, including those provided by the engine manufacturer. The TM202x series instruments are only parameter reporting devices which can assist in engine management when used in conjunction with these instructions.

All TM202x products are certified as primary replacements, within the limits as described above, or for secondary use as desired.
TM202X Product Specifications

<table>
<thead>
<tr>
<th>Certification / Compliance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TSO</td>
<td>C49b</td>
</tr>
<tr>
<td>Environmental</td>
<td>DO-160F</td>
</tr>
<tr>
<td>Software</td>
<td>DO-178B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DC Power Source</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>6 to 36 VDC</td>
</tr>
<tr>
<td>Power consumption</td>
<td>100mA</td>
</tr>
<tr>
<td>Load dump tolerance</td>
<td>+60V</td>
</tr>
<tr>
<td>Direct spike tolerance</td>
<td>+/- 60V</td>
</tr>
<tr>
<td>Cable spike tolerance</td>
<td>> +/- 1KV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant operating</td>
<td>-15ºC to +55ºC</td>
</tr>
<tr>
<td>Short term operating (1hr)</td>
<td>-40ºC to +70ºC</td>
</tr>
<tr>
<td>Storage</td>
<td>-55ºC to +85ºC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Input</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5V pulse width modulated square wave</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>0 - 9000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accuracy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AS404C</td>
<td>+/- 1 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunlight readable LCD</td>
<td></td>
</tr>
<tr>
<td>176 X 192 display pixels, 65,535 colors</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annunciator Output</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100mA sink with reverse EMF protection</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RS-232 Data Output</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 second per full sequence at 57.6K bps (8/N/2/N)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface Connector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DB-25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software Functionality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Engine RPM – Left and Right</td>
</tr>
<tr>
<td>Engine Time</td>
<td>Display of engine time – Left and Right</td>
</tr>
<tr>
<td>Trend Graph</td>
<td>Graphic display of engine RPM – Left and Right</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.45" X 2.45" X 0.96"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight (excluding harness)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.05 oz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finish</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Black anodized 6061 aluminum</td>
<td></td>
</tr>
</tbody>
</table>
1. **Installation Procedures and Limitations**

 Should your specific aircraft not be listed on our STC Approved Model List (AML), contact your local FSDO or flight authority for installation requirements **BEFORE commencing any installation tasks.**

 Installation must be in accordance with the following TM202X published documents:

 a. Installation Instructions,
 b. Wiring and Installation Schematic, and
 c. Instrument Setup.

2. **Installation Location and Visibility**

 The products are to be installed in existing panel holes and will replace existing instrumentation. As primary replacement products it is recommended and preferred that they be placed in the same panel location as the original equipment. Their visibility and placement relative to other instruments are the same or similar to the existing instruments. Where they are installed in a different location it is the responsibility of the installer to ensure that they are visible to the pilot under all conditions.

3. **TSO COMPLIANCE NOTICE**

 The conditions and tests required for TSO approval of this instrument are minimum performance standards. Those installing this instrument on or in a specific type or class of aircraft, must determine that the aircraft installation conditions are within the TSO standards. TSO articles must have separate approval for installation in an aircraft. The instrument may be installed only according to 14 CFR part 43 or the applicable airworthiness requirement.