Introduction

Since the beginning of manned flight, it has been recognized that supplying the pilot with information about the aircraft and its operation could be useful and lead to safer flight. The Wright Brothers had very few instruments on their Wright Flyer, but they did have an engine tachometer, an anemometer (wind meter), and a stop watch. They were obviously concerned about the aircraft’s engine and the progress of their flight. From that simple beginning, a wide variety of instruments have been developed to inform flight crews of different parameters. Instrument systems now exist to provide information on the condition of the aircraft, engine, components, the aircraft’s attitude in the sky, weather, cabin environment, navigation, and communication. Figure 10-1 shows various instrument panels from the Wright Flyer to a modern jet airliner.
The ability to capture and convey all of the information a pilot may want, in an accurate, easily understood manner, has been a challenge throughout the history of aviation. As the range of desired information has grown, so too have the size and complexity of modern aircraft, thus expanding even further the need to inform the flight crew without sensory overload or overcluttering the cockpit. As a result, the old flat panel in the front of the cockpit with various individual instruments attached to it has evolved into a sophisticated computer-controlled digital interface with flat-panel display screens and prioritized messaging. A visual comparison between a conventional cockpit and a glass cockpit is shown in Figure 10-2.

There are usually two parts to any instrument or instrument system. One part senses the situation and the other part displays it. In analog instruments, both of these functions often take place in a single unit or instrument (case). These are called direct-sensing instruments. Remote-sensing requires the information to be sensed, or captured, and then sent to a separate display unit in the cockpit. Both analog and digital instruments make use of this method. [Figure 10-3]
The relaying of important bits of information can be done in various ways. Electricity is often used by way of wires that carry sensor information into the cockpit. Sometimes pneumatic lines are used. In complex, modern aircraft, this can lead to an enormous amount of tubing and wiring terminating behind the instrument display panel. More efficient information transfer has been accomplished via the use of digital data buses. Essentially, these are wires that share message carrying for many instruments by digitally encoding the signal for each. This reduces the number of wires and weight required to transfer remotely sensed information for the pilot’s use. Flat-panel computer display screens that can be controlled to show only the information desired are also lighter in weight than the numerous individual gauges it would take to display the same information simultaneously. An added bonus is the increased reliability inherent in these solid-state systems.

It is the job of the aircraft technician to understand and maintain all aircraft, including these various instrument systems. Accordingly, in this chapter, discussions begin with analog instruments and refer to modern digital instrumentation when appropriate.

### Classifying Instruments

There are three basic kinds of instruments classified by the job they perform: flight instruments, engine instruments, and navigation instruments. There are also miscellaneous gauges and indicators that provide information that do not fall into these classifications, especially on large complex aircraft. Flight control position, cabin environmental systems, electrical power, and auxiliary power units (APUs), for example, are all monitored and controlled from the cockpit via the use of instruments systems. All may be regarded as position/condition instruments since they usually report the position of a certain moveable component on the aircraft, or the condition of various aircraft components or systems not included in the first three groups.

#### Flight Instruments

The instruments used in controlling the aircraft’s flight attitude are known as the flight instruments. There are basic flight instruments, such as the altimeter that displays aircraft altitude; the airspeed indicator; and the magnetic direction indicator, a form of compass. Additionally, an artificial horizon, turn coordinator, and vertical speed indicator are flight instruments present in most aircraft. Much variation exists for these instruments, which is explained throughout this chapter. Over the years, flight instruments have come to be situated similarly on the instrument panels in most aircraft. This basic T arrangement for flight instruments is shown in Figure 10-4. The top center position directly in front of the pilot and copilot is the basic display position for the artificial horizon even in modern glass cockpits (those with solid-state, flat-panel screen indicating systems).

Original analog flight instruments are operated by air pressure and the use of gyroscopes. This avoids the use of electricity, which could put the pilot in a dangerous situation if the aircraft lost electrical power. Development of sensing and display techniques, combined with advanced aircraft electrical systems, has made it possible for reliable primary and secondary instrument systems that are electrically operated. Nonetheless, often a pneumatic altimeter, a gyro artificial horizon, and a magnetic direction indicator are retained somewhere in the instrument panel for redundancy. [Figure 10-5]

### Engine Instruments

Engine instruments are those designed to measure operating parameters of the aircraft’s engine(s). These are usually quantity, pressure, and temperature indications. They also include measuring engine speed(s). The most common engine instruments are the fuel and oil quantity and pressure gauges, tachometers, and temperature gauges. Figure 10-6 contains various engine instruments found on reciprocating and turbine-powered aircraft.
Engine instrumentation is often displayed in the center of the cockpit where it is easily visible to the pilot and copilot. [Figure 10-7] On light aircraft requiring only one flight crewmember, this may not be the case. Multiengine aircraft often use a single gauge for a particular engine parameter, but it displays information for all engines through the use of multiple pointers on the same dial face.

**Navigation Instruments**

Navigation instruments are those that contribute information used by the pilot to guide the aircraft along a definite course. This group includes compasses of various kinds, some of which incorporate the use of radio signals to define a specific course while flying the aircraft en route from one airport to another. Other navigational instruments are designed specifically to direct the pilot’s approach to landing at an airport. Traditional navigation instruments include a clock and a magnetic compass. Along with the airspeed indicator and wind information, these can be used to calculate navigational progress. Radios and instruments sending locating information via radio waves have replaced these manual efforts in modern aircraft. Global position systems (GPS) use satellites to pinpoint the location of the aircraft via geometric triangulation. This technology is built into some aircraft instrument packages for navigational purposes.

<table>
<thead>
<tr>
<th>Reciprocating engines</th>
<th>Turbine engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil pressure</td>
<td>Oil pressure</td>
</tr>
<tr>
<td>Oil temperature</td>
<td>Exhaust gas temperature (EGT)</td>
</tr>
<tr>
<td>Cylinder head temperature (CHT)</td>
<td>Turbine inlet temperature (TIT) or turbine gas temperature (TGT)</td>
</tr>
<tr>
<td>Manifold pressure</td>
<td>Engine pressure ratio (EPR)</td>
</tr>
<tr>
<td>Fuel quantity</td>
<td>Fuel quantity</td>
</tr>
<tr>
<td>Fuel pressure</td>
<td>Fuel pressure</td>
</tr>
<tr>
<td>Tachometer</td>
<td>Tachometer (percent calibrated)</td>
</tr>
<tr>
<td>Carburetor temperature</td>
<td>N₁ and N₂ compressor speeds</td>
</tr>
<tr>
<td></td>
<td>Torquemeter (on turboprop and turboshaft engines)</td>
</tr>
</tbody>
</table>

**Figure 10-6.** Common engine instruments. Note: For example purposes only. Some aircraft may not have these instruments or may be equipped with others.
Many of these aircraft navigational systems are discussed in chapter 11 of this handbook. [Figure 10-8]

To understand how various instruments work and can be repaired and maintained, they can be classified according to the principle upon which they operate. Some use mechanical methods to measure pressure and temperature. Some utilize magnetism and electricity to sense and display a parameter. Others depend on the use of gyroscopes in their primary workings. Still others utilize solid state sensors and computers to process and display important information. In the following sections, the different operating principles for sensing parameters are explained. Then, an overview of many of the engine, flight, and navigation instruments is given.

Pressure Measuring Instruments

A number of instruments inform the pilot of the aircraft’s condition and flight situations through the measurement of pressure. Pressure-sensing instruments can be found in the flight group and the engine group. They can be either direct reading or remote sensing. These are some of the most critical instruments on the aircraft and must accurately inform the pilot to maintain safe operations. Pressure measurement involves some sort of mechanism that can sense changes in pressure. A technique for calibration and displaying the information is then added to inform the pilot. The type of pressure needed to be measured often makes one sensing mechanism more suited for use in a particular instance. The three fundamental pressure-sensing mechanisms used in aircraft instrument systems are the Bourdon tube, the diaphragm or bellows, and the solid-state sensing device.

A Bourdon tube is illustrated in Figure 10-9. The open end of this coiled tube is fixed in place and the other end is sealed and free to move. When a fluid that needs to be measured is directed into the open end of the tube, the unfixed portion

![Figure 10-9. The Bourdon tube is one of the basic mechanisms for sensing pressure.](image)

of the coiled tube tends to straighten out. The higher the pressure of the fluid, the more the tube straightens. When the pressure is reduced, the tube recoils. A pointer is attached to this moving end of the tube, usually through a linkage of small shafts and gears. By calibrating this motion of the straightening tube, a face or dial of the instrument can be created. Thus, by observing the pointer movement along the scale of the instrument face positioned behind it, pressure increases and decreases are communicated to the pilot.

The Bourdon tube is the internal mechanism for many pressure gauges used on aircraft. When high pressures need to be measured, the tube is designed to be stiff. Gauges used to indicate lower pressures use a more flexible tube that uncoils and coils more readily. Most Bourdon tubes are made from brass, bronze, or copper. Alloys of these metals can be made to coil and uncoil the tube consistently numerous times.

Bourdon tube gauges are simple and reliable. Some of the instruments that use a Bourdon tube mechanism include the engine oil pressure gauge, hydraulic pressure gauge, oxygen tank pressure gauge, and deice boot pressure gauge. Since the pressure of the vapor produced by a heated liquid

![Figure 10-8. Navigation instruments.](image)
or gas increases as temperature increases, Bourdon tube mechanisms can also be used to measure temperature. This is done by calibrating the pointer connecting linkage and relabeling the face of the gauge with a temperature scale. Oil temperature gauges often employ Bourdon tube mechanisms. [Figure 10-10]

Since the sensing and display of pressure or temperature information using a Bourdon tube mechanism usually occurs in a single instrument housing, they are most often direct reading gauges. But the Bourdon tube sensing device can also be used remotely. Regardless, it is necessary to direct the fluid to be measured into the Bourdon tube. For example, a common direct-reading gauge measuring engine oil pressure and indicating it to the pilot in the cockpit is mounted in the instrument panel. A small length of tubing connects a pressurized oil port on the engine, runs though the firewall, and into the back of the gauge. This setup is especially functional on light, single-engine aircraft in which the engine is mounted just forward of the instrument panel in the forward end of the fuselage. However, a remote sensing unit can be more practical on twin-engine aircraft where the engines are a long distance from the cockpit pressure display. Here, the Bourdon tube’s motion is converted to an electrical signal and carried to the cockpit display via a wire. This is lighter and more efficient, eliminating the possibility of leaking fluids into the passenger compartment of the aircraft.

The diaphragm and bellows are two other basic sensing mechanisms employed in aircraft instruments for pressure measurement. The diaphragm is a hollow, thin-walled metal disk, usually corrugated. When pressure is introduced through an opening on one side of the disk, the entire disk expands. By placing linkage in contact against the other side of the disk, the movement of the pressurized diaphragm can be transferred to a pointer that registers the movement against the scale on the instrument face. [Figure 10-11]

Diaphragms can also be sealed. The diaphragm can be evacuated before sealing, retaining absolutely nothing inside. When this is done, the diaphragm is called an aneroid. Aneroids are used in many flight instruments. A diaphragm can also be filled with a gas to standard atmospheric pressure and then sealed. Each of these diaphragms has their uses, which are described in the next section. The common factor in all is that the expansion and contraction of the side wall of the diaphragm is the movement that correlates to increasing and decreasing pressure.

When a number of diaphragm chambers are connected together, the device is called a bellows. This accordion-like assembly of diaphragms can be very useful when measuring the difference in pressure between two gases, called differential pressure. Just as with a single diaphragm, it is the movement of the side walls of the bellows assembly that correlates with changes in pressure and to which a pointer linkage and gearing is attached to inform the pilot. [Figure 10-12]
Diaphragms, aneroids, and bellows pressure sensing devices are often located inside the single instrument housing that contains the pointer and instrument dial read by the pilot on the instrument panel. Thus, many instruments that make use of these sensitive and reliable mechanisms are direct reading gauges. But, many remote sensing instrument systems also make use of the diaphragm and bellows. In this case, the sensing device containing the pressure sensitive diaphragm or bellows is located remotely on the engine or airframe. It is part of a transducer that converts the pressure into an electrical signal. The transducer, or transmitter, sends the signal to the gauge in the cockpit, or to a computer, for processing and subsequent display of the sensed condition. Examples of instruments that use a diaphragm or bellows in a direct reading or remote sensing gauge are the altimeter, vertical speed indicator, cabin differential pressure gauge (in pressurized aircraft), and manifold pressure gauge.

Solid-state microtechnology pressure sensors are used in modern aircraft to determine the critical pressures needed for safe operation. Many of these have digital output ready for processing by electronic flight instrument computers and other onboard computers. Some sensors send microelectric signals that are converted to digital format for use by computers. As with the analog sensors described above, the key to the function of solid-state sensors is their consistent property changes as pressure changes.

The solid-state sensors used in most aviation applications exhibit varying electrical output or resistance changes when pressure changes occur. Crystalline piezoelectric, piezoresistor, and semiconductor chip sensors are most common. In the typical sensor, tiny wires are embedded in the crystal or pressure-sensitive semiconductor chip. When pressure deflects the crystal(s), a small amount of electricity is created or, in the case of a semiconductor chip and some crystals, the resistance changes. Since the current and resistance changes vary directly with the amount of deflection, outputs can be calibrated and used to display pressure values.

Nearly all of the pressure information needed for engine, airframe, and flight instruments can be captured and/or calculated through the use of solid-state pressure sensors in combination with temperature sensors. But continued use of aneroid devices for comparisons involving absolute pressure is notable. Solid-state pressure-sensing systems are remote sensing systems. The sensors are mounted on the aircraft at convenient and effective locations.

**Types of Pressure**

Pressure is a comparison between two forces. Absolute pressure exists when a force is compared to a total vacuum, or absolutely no pressure. It is necessary to define absolute pressure, because the air in the atmosphere is always exerting pressure on everything. Even when it seems there is no pressure being applied, like when a balloon is deflated, there is still atmospheric pressure inside and outside of the balloon. To measure that atmospheric pressure, it is necessary to compare it to a total absence of pressure, such as in a vacuum.

Many aircraft instruments make use of absolute pressure values, such as the altimeter, the rate-of-climb indicator, and the manifold pressure gauge. As stated, this is usually done with an aneroid.

The most common type of pressure measurement is gauge pressure. This is the difference between the pressure to be measured and the atmospheric pressure. The gauge pressure inside the deflated balloon mentioned above is therefore 0 pounds per square inch (psi). Gauge pressure is easily measured and is obtained by ignoring the fact that the atmosphere is always exerting its pressure on everything. For example, a tire is filled with air to 32 psi at a sea level location and checked with a gauge to read 32 psi, which is the gauge pressure. The approximately 14.7 psi of air pressing on the outside of the tire is ignored. The absolute pressure in the tire is 32 psi plus the 14.7 psi that is needed to balance the 14.7 psi on the outside of the tire. So, the tire’s absolute pressure is approximately 46.7 psi. If the same tire is inflated to 32
psi at a location 10,000 feet above sea level, the air pressure on the outside of the tire would only be approximately 10 psi, due to the thinner atmosphere. The pressure inside the tire required to balance this would be 32 psi plus 10 psi, making the absolute pressure of the tire 42 psi. So, the same tire with the same amount of inflation and performance characteristics has different absolute pressure values. Gauge pressure, however, remains the same, indicating the tires are inflated identically. In this case, gauge pressure is more useful in informing us of the condition of the tire.

Gauge pressure measurements are simple and widely useful. They eliminate the need to measure varying atmospheric pressure to indicate or monitor a particular pressure situation. Gauge pressure should be assumed, unless otherwise indicated, or unless the pressure measurement is of a type known to require absolute pressure.

In many instances in aviation, it is desirable to compare the pressures of two different elements to arrive at useful information for operating the aircraft. When two pressures are compared in a gauge, the measurement is known as differential pressure and the gauge is a differential pressure gauge. An aircraft’s airspeed indicator is a differential pressure gauge. It compares ambient air pressure with ram air pressure to determine how fast the aircraft is moving through the air. A turbine’s engine pressure ratio (EPR) gauge is also a differential pressure gauge. It compares the pressure at the inlet of the engine with that at the outlet to indicate the thrust developed by the engine. Both of these differential pressure gauges and others are discussed further in this chapter and throughout this handbook.

In aviation, there is also a commonly used pressure known as standard pressure. Standard pressure refers to an established or standard value that has been created for atmospheric pressure. This standard pressure value is 29.92 inches of mercury (“Hg), 1,013.2 hectopascal (hPa), or 14.7 psi. It is part of a standard day that has been established that includes a standard temperature of 15 °C at sea level. Specific standard day values have also been established for air density, volume, and viscosity. All of these values are developed averages since the atmosphere is continuously fluctuating. They are used by engineers when designing instrument systems and are sometimes used by technicians and pilots. Often, using a standard value for atmospheric pressure is more desirable than using the actual value. For example, at 18,000 feet and above, all aircraft use 29.92 “Hg as a reference pressure for their instruments to indicate altitude. This results in altitude indications in all cockpits being identical. Therefore, an accurate means is established for maintaining vertical separation of aircraft flying at these high altitudes.

**Pressure Instruments**

**Engine Oil Pressure**

The most important instrument used by the pilot to perceive the health of an engine is the engine oil pressure gauge. [Figure 10-13] Oil pressure is usually indicated in psi. The normal operating range is typically represented by a green arc on the circular gauge. For exact acceptable operating range, consult the manufacturer’s operating and maintenance data. In reciprocating and turbine engines, oil is used to lubricate and cool bearing surfaces where parts are rotating or sliding past each other at high speeds. A loss of pressurized oil to these areas would rapidly cause excessive friction and over temperature conditions, leading to catastrophic engine failure. As mentioned, aircraft using analog instruments often use direct reading Bourdon tube oil pressure gauges. Figure 10-13 shows the instrument face of a typical oil pressure gauge of this type. Digital instrument systems use an analog or digital remote oil pressure sensing unit that sends output to the computer, driving the display of oil pressure value(s) on the aircraft’s cockpit display screens. Oil pressure may be displayed in a circular or linear gauge fashion and may even include a numerical value on screen. Often, oil pressure is grouped with other engine parameter displays on the same page or portion of a page on the display. Figure 10-14 shows this grouping on a Garmin G1000 digital instrument display system for general aviation aircraft.

![Figure 10-13. An analog oil pressure gauge is driven by a Bourdon tube. Oil pressure is vital to engine health and must be monitored by the pilot.](image)
Manifold Pressure

In reciprocating engine aircraft, the manifold pressure gauge indicates the pressure of the air in the engine’s induction manifold. This is an indication of power being developed by the engine. The higher the pressure of the fuel air mixture going into the engine, the more power it can produce. For normally aspirated engines, this means that an indication near atmospheric pressure is the maximum. Turbocharged or supercharged engines pressurize the air being mixed with the fuel, so full power indications are above atmospheric pressure.

Most manifold pressure gauges are calibrated in inches of mercury, although digital displays may have the option to display in a different scale. A typical analog gauge makes use of an aneroid described above. When atmospheric pressure acts on the aneroid inside the gauge, the connected pointer indicates the current air pressure. A line running from the intake manifold into the gauge presents intake manifold air pressure to the aneroid, so the gauge indicates the absolute pressure in the intake manifold. An analog manifold pressure gauge, along with its internal workings, is shown in Figure 10-15. The digital presentation of manifold pressure is at the top of the engine instruments displayed on the Garmin G1000 multifunctional display in Figure 10-14. The aircraft’s operating manual contains data on managing manifold pressure in relation to fuel flow and propeller pitch and for achieving various performance profiles during different phases of run-up and flight.

Engine Pressure Ratio (EPR)

Turbine engines have their own pressure indication that relates the power being developed by the engine. It is called the engine pressure ratio (EPR) indicator (EPR gauge). This gauge compares the total exhaust pressure to the pressure of the ram air at the inlet of the engine. With adjustments for temperature, altitude, and other factors, the EPR gauge presents an indication of the thrust being developed by the engine. Since the EPR gauge compares two pressures, it is a differential pressure gauge. It is a remote-sensing instrument that receives its input from an engine pressure ratio transmitter or, in digital instrument systems displays, from a computer. The pressure ratio transmitter contains the bellows arrangement that compares the two pressures and converts the ratio into an electric signal used by the gauge for indication. [Figure 10-16]