

KLR 10

Lift Reserve Indicator

Pilot's Guide

BendixKing.

by Honeywell

BendixKing.com

Bendix/King by Honeywell

9201-B San Mateo Blvd. NE Albuquerque, New Mexico 87112

Product Registration

For product registration go to BendixKing.com or call our customer support number below.

Customer Support

US and Canada - 1.855.250.7027 International – 1.602.365.7027 bendixking.com/support

At Bendix/King we value your opinion and we are listening. For comments about this guide, please email: pubs@bendixking.com

The information contained in this manual is for reference only. If any information contained herein conflicts with similar information contained in the Airplane Flight Manual, the information in the Airplane Flight Manual shall take precedence.

COPYRIGHT NOTICE

© 2013 Bendix/King by Honeywell. All rights reserved.

Reproduction of this publication or any portion thereof by any means without the express written permission of Honeywell International Inc. is prohibited. See Appendix for complete terms and conditions.

KLR 10™

LIFT RESERVE INDICATOR

PILOT'S GUIDE

The KLR 10 is approved for installation in experimental category aircraft ONLY. It is not approved for installation in certified aircraft.

P/N D201306000109 Title
Rev 0 Jul 2013 Page T-1

Revision History and Instructions

Manual KLR 10 Indicator Pilot's Guide

Revision 0

Summary This is a new release.

Record of Revisions

REVISION NUMBER	REVISION DATE
0	JUL, 2013

Title P/N D201306000109

Table of Contents

<u>Se</u>	<u>ction</u>	<u>Page</u>
1.	Introduction	1-1
	1.1 Background Information:	1-1
	1.2 System Description	
2.	KLR 10 Controls	2-1
	2.1 Power Up Self Test	
	2.2 KLR 10 Indicator Main Controls	2-1
	2.3 The KLR 10 Display Segments:	
	2.4 Display Brightness Calibration	
	2.5 Brightness Adjustment when Active	
	2.6 In-Flight Calibration Flow Charts	
3.	Operation	3-1
	3.1 Practice High AOA Flight Regime	
	Observed Indications	
	3.2 Practice Takeoff and Climb using AOA	3-7
	Establish Segments Illuminated	
	Fly Practice Approaches for Familiarization	
	Observed Indications	
	3.3 Practice Best Glide speed	
	Establish Segments Illuminated	
	3.4 Practice Approaches using AOA	
	Establish Segments Illuminated	
	Fly Practice Approaches for Familiarization	
	Useful Techniques when using KLR 10 Indicato	
	NOTES	
4.	Appendix	
	4.1 Acronyms and Abbreviations	
	4.2 Honeywell-Confidential	
	4.3 Copyright - Notice	4-4

Rev 0 Jul 2013

Page TC-1

List of Illustrations

<u>Figure</u>	<u>Page</u>
Figure 2-1: KLR-10 Indicator Controls	2-1
Figure 2-2: OAA Setpoint Calibration	2-9
Figure 2-3: Cruise Setpoint Calibration	2-10

List of Tables

<u>Table</u>	<u>Page</u>
Table 2-1: KLR 10 Indicator Control Switch Features	2-2
Table 2-2: KLR 10 Indicator Segments	2-4
Table 3-1: Observed Indications Chart	3-17

1. INTRODUCTION

1.1 BACKGROUND INFORMATION:

The KLR 10 system is primarily designed to improve operational safety of airplanes by increasing pilot awareness of available lift during operations at high angles of attack (AOA). Additional benefits may be reaped by identifying or maximizing aircraft performance based on a fixed AOA or a constant CL, such as maximum range, best glide, climbs and approaches.

AOA: Angle of Attack is the difference between the

airfoil's cord line (a line from the leading edge to the trailing edge of the wing) and the relative

wind (the inverse of the aircraft flight path).

CL: Coefficient of Lift is a relative measure of an

airfoil's lifting capabilities.

CLmax: Coefficient of Lift Maximum is the AOA which if

exceeded will cause the airfoil to stall.

CD: Coefficient of Drag is a measure of total drag,

induced and parasite drag.

CL/CD: Coefficient of Lift over Coefficient of Drag is a

ratio between lift and drag.

CL/CD Maximum: The maximum lift-to-drag ratio at which

maximum range and maximum glide distance will

be found for propeller airplanes.

1.2 SYSTEM DESCRIPTION

The KLR 10 measures pressure at two points from an AOA probe mounted solidly to the wing in reference to the cord of the wing that conveys changing differential pressures, via sense lines, to the KLR 10 IF module. The IF module converts the pressures into an electronic signal that is transmitted to the KLR 10 indicator.

The KLR 10 indicator interprets the signal and turns on the appropriate segments to convey the AOA or lift information to the pilot. In addition to the visual display, the IF module also has an I/O connector that allows connection of the remote audio interface system that provides warning annunciations in the pilot's headset.

The KLR 10 draws a minimal current of less than approximately 1/4 amp (250mA) of electrical power. For the system to operate correctly, it must be supplied electrical power within a range of 12 to 28VDC and be calibrated correctly.

The AOA probe must be kept clear of any obstructions and be mounted securely, in clean air flow. The final AOA probe to wing angle will be determined by the amount the bottom of the wing varies from parallel to the cord of the wing. For most aircraft, the starting angle is 50 degrees from the leading edge of the AOA probe mounting plate. The KLR 10 system will adjust for differences within a limited electrical signal range. AOA Probe angle readjustment may be needed to allow for full scale electronic calibration.

Probe heat is an option and if installed requires approximately 7.8 amps of electrical power at 12 or 24VDC to operate. To extend the life of the probe heat element, it is recommended that the probe heat not be used for prolonged periods while on the ground.

KLR 10 Controls P/N D201306000109 Rev 0 Jul 2013

2. KLR 10 CONTROLS

2.1 POWER UP SELF TEST

When power is first applied to the KLR 10, the KLR 10 runs through a built in test. During the test, the segments cycle up and then down the display. When the test is complete, the segments turn off and the KLR 10 annunciates "AOA test complete".

2.2 KLR 10 INDICATOR MAIN CONTROLS

Figure 2-1: KLR-10 Indicator Controls

Use the table below for a description of the functions of the controls in Figure 2-1

P/N D201306000109 Rev 0 Jul 2013

Table 2-1: KLR 10 Indicator Control Switch Features

ITEM	CONTROL	FUNCTION
1	Audio "Mute" Amber LED	When the LED is illuminated, audio is muted. When the LED is not illuminated, audio is not muted.
2	Audio "Mute" Toggle Switch	In the UP position, this switch mutes the audio and illuminates the amber LED (1) on the KLR 10 indicator.
		In the down position, this switch activates the high AOA warning annunciations and the amber LED (1) on the KLR 10 indicator is not illuminated.
3	Calibration Mode Switch	Rotary switch used to enter calibration mode. When the slot is in the vertical position and the brightness mode button is pressed one time, the calibration mode is activated. When the slot is turned to the horizontal position and the brightness mode button is pressed one time, the calibration mode is exited and the KLR 10 unit announces: "Calibration Mode Off".

 KLR 10 Controls
 P/N D201306000109

 Page 2-2
 Rev 0 Jul 2013

ITEM	CONTROL	FUNCTION
4	Brightness / MODE Push Button Switch	The Brightness button is the black push button on the lower right corner of the display.
	(Multiple Functions)	The Brightness button has 2 functions:
		Changes the brightness levels of the colored segments (Quickly push and release to cycle thru 16 brightness levels),
		Operates as a MODE switch, to enter into and out of OAA and Cruise calibration steps when the calibration rotary switch is vertical. See page 2-7 for more information on how to set the Brightness levels.
5	The "CAL SET" push button	The calibration set push button is the black button located at the bottom right corner and is recessed underneath the front case. The calibration set button is used to enter selected calibration set points (Ground Zero, OAA and Cruise) during the calibration procedure. It can be actuated using a pencil or other small blunt pointer.
6	Display Segments	Multicolored segments that correspond to different angles of attack for the aircraft.
7	Auto Brightness Photo Cell	The photo cell is in the top, middle of the KLR 10 display and automatically detects the ambient light changes which will switch from daytime brightness preset to nighttime brightness presets.

2.3 THE KLR 10 DISPLAY SEGMENTS:

The KLR 10 display has chevron and bar styled LED-driven colorcoded segments; which once correctly calibrated, illuminate corresponding to the AOA of the aircraft. The display will respond to the linear changes of the aircraft's AOA from Cruise, up to Stall and repeatable. instantaneously changing segment aives а representation of that range. The display will illuminate a series of segments from no segments to the Green Bar transitional ("Cruise" indication for the aircraft located at the bottom of the display), and on through to the flashing Red Arrow (stall indication for the aircraft located at the top of the display).

A correctly calibrated KLR 10 will provide a linear increase in AOA indication as the aircraft slows. The final "Too slow Too Slow" alert with flashing red arrow MUST be active prior to the actual aerodynamic stall. Ensure during post-calibration testing that the final KLR 10 alert state is displayed prior to any stall indications.

The 10 possible segment combinations are listed below. Every aircraft will correlate the lit segment or combination of segments to the specific aircraft's AOA dynamics, once calibrated. The relationship of when and which combination shows is unique to the aircraft's AOA and can be accurately correlated **ONLY** when in-flight.

SEGMENT

G

Green Bar with no other segments indicates Cruise set point, (lots of lift).

Y1

Single lower Yellow Bar with no other segments indicates slowing/moderate AOA.

Table 2-2: KLR 10 Indicator Segments

KLR 10 Controls P/N D201306000109
Page 2-4 Rev 0 Jul 2013

SEGMENT	ABBR	CONDITION
	Y2	Double Yellow Bars with no other segments indicates pattern entry/increasing AOA.
	Y3	Single upper Yellow Bar with no other segments indicates Base leg/increasing AOA.
	YB	Single upper Yellow Bar with Blue lower Half-Circle indicates Final/slightly fast.
	В	Blue Circle / Donut with no other segments indicates Optimum Alpha Angle (AOA).
	BR	Single Red Bar with Blue upper- Half-Circle with no other segments indicates slightly slow/below OAA.
	R1	Red Bar with inverted Red Chevron with no other segments indicates too slow (level 1) KLR 10 annunciates "Check AOA".
	R2	Red Arrow with inverted Red Chevron with no other segments indicates too slow (level 2) and KLR 10 annunciates "Caution. Too Slow".

SEGMENT	ABBR	CONDITION
	R3	Flashing Red Arrow, with no other segments indicates critical AOA (level 3) and KLR 10 annunciates "Too slow! Too slow!"

Note: No Segments illuminated = Power off OR very low speed and lift state OR absence of pressure information to the interface module OR aircraft on the ground with no movement.

 KLR 10 Controls
 P/N D201306000109

 Page 2-6
 Rev 0 Jul 2013

2.4 DISPLAY BRIGHTNESS CALIBRATION

The KLR 10 indicator is preset at the factory for daytime/nighttime brightness levels. If the maximum/minimum brightness levels need to be changes in your aircraft follow the following procedure to preset both the daytime and nighttime display brightness levels while on the ground.

Enter the Brightness calibration mode as follows:

- Ensure that power is not applied to the KLR 10.
- Depress and hold the Brightness button on the KLR 10 indicator then apply power to the KLR 10.
- Continue to depress the Brightness button for about 6 seconds after power has been applied.
- Release the Brightness button.

The system enters its self test causing the colored segment illumination routine. All segments are illuminated one by one upwards and then one by one downwards ending with all the segments being illuminated.

The system is now in Brightness calibration mode.

With a light applied directly to the photo diode on the KLR 10 indicator for at least 5 seconds, press and release the Brightness button until the display is at its maximum brightness.

Cycling past the maximum brightness of the colored segments will cause the indicator to return to the minimum level. There are 16 brightness steps that are sequenced through, increasing brightness at each step.

 Wait 5 seconds for the unit to store the setting then remove the light from the KLR 10 indicator.

The display's brightness will change to the lower brightness level unless the low light setting was set to maximum brightness or the cockpit is in daylight.

P/N D201306000109 KLR 10 Controls

- Next, cover the photo diode on the display for at least 5 seconds with your thumb or a piece of black electrical tape, quickly press and release the **Brightness** button on the KLR 10 indicator until it's at a minimum or lowest level.
- Wait 5 seconds for the unit to store the setting than remove your thumb or tape.
- Observe that the display's brightness level changes from dim to bright when light is applied and removed from the photo diode.
- Remove power, wait a few seconds and re-apply power.

The system will enter its self test, display illumination routine in which all colored segments are illuminated one by one upwards and then one by one downwards. The system enters the active mode if calibration has been completed or the inactive pre-calibration display mode, needing **OAA** and **Cruise** calibration.

2.5 BRIGHTNESS ADJUSTMENT WHEN ACTIVE

To change brightness when the unit is active, quickly push and release the **Brightness** button until the desired brightness level is reached.

There are 16 brightness levels and a photo cell to detect "nighttime" and "daytime" ambient light levels and automatically switches to the stored level. The new brightness levels are stored when powered off.

2.6 IN-FLIGHT CALIBRATION FLOW CHARTS

The following flow charts contain an abbreviation version of the inflight calibration procedures. The complete in-flight calibration procedures are contained in Section 5 of the KLR 10 Lift Reserve Indicator Installation Manual, Rev 0.

KLR 10 Controls P/N D201306000109
Page 2-8 Rev 0 Jul 2013

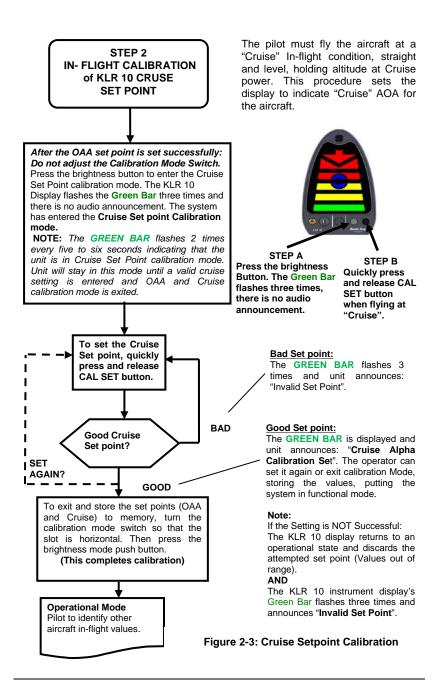
STEP 1 IN- FLIGHT **CALIBRATION of KLR 10 OPTIMUM ALPHA ANGLE** (OAA) **SET POINT**

Turn the Calibration Mode Switch so slot is vertical. Press the Brightness button. The Blue Circle/Donut on the display flashes three times, and the unit announces "Calibration Mode On". The system has entered the **OAA** set-point calibration mode. The Note: Blue Circle/Donut flashes 2 times every five to six

seconds to indicate the unit is in OAA set point calibration mode. The system will remain at OAA Set Point calibration mode until a valid value has been entered.

To set an OAA, quickly press and release CAL SET button. BAD Good OAA Set point? SET AGAIN? GOOD

Once a good OAA Set point has been achieved. the pilot continues to STEP 2 and MUST enter into the Cruise Calibration Mode or repeat the OAA Set point Operation.


In-Flight calibration requires the pilot to climb to a safe altitude for slow flight maneuvers. The pilot will fly the aircraft to the condition of Optimum Alpha Angle (OAA): Aircraft is at OAA, when:

- Aircraft is at a safe altitude for slow flight maneuvers.
- 2.) Minimum controllable flight, lower power setting, (such as a down wind or landing pattern power setting).
- 3.) Able to hold altitude, 0 Vertical Speed, not descending, zero sink (5 to 10 fpm climb OK if your aircraft looses flight control stability at 0 VS).
- Full aileron, elevator and rudder control, not in a buffet, pilot to identify the set point by pitching back slowly to a pitch no longer able to climb but able to hold altitude with full control of the airplane.

Figure 2-2: OAA Setpoint Calibration

P/N D201306000109 KLR 10 Controls Page 2-9

KLR 10 Controls P/N D201306000109
Page 2-10 Rev 0 Jul 2013

3. OPERATION

The KLR 10 Lift Reserve Indicator improves pilot awareness of available lift during operation at high angles of attack such as slow flight, takeoffs and landings.

The system is calibrated with the aircraft in the clean configuration. When flaps are extended, the KLR 10 AOA indications will be more conservative (showing higher AOA) when flaps are extended.

This section explains the procedures to be flown to develop a reference list that shows the segments that are lit on the KLR 10 Indicator during the different phases of flight.

Section 3.1 on page 3-2 gives the procedure to practice a high AOA flight regime with the use of the KLR 10 Indicator.

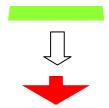
Section 3.2 on page 3-7 gives the procedures to practice takeoffs and climb outs with the use of the KLR 10 Indicator.

Section 3.3 on page 3-11 gives the procedures to maintain best glide speed with the use of the KLR 10 Indicator.

Section 3.4 on page 3-13 gives the procedures to practice approaches with the use of the KLR 10 Indicator.

P/N *D201306000109* Operation Rev 0 Jul 2013 *Page 3-1*

3.1 PRACTICE HIGH AOA FLIGHT REGIME


To familiarize you with the **KLR 10** indications during a high AOA flight regime, use the following outline as a guide:

- Plan a flight to an area where high AOA flight can be performed without any undue hazards (reference § 91.303 & § 91.305).
- Review the stall recovery procedures for your aircraft. If an inadvertent stall occurs, immediately recover from the stall using per your training and the aircraft manufacturers instructions. At no time is a stall required to correctly calibrate or operate the KLR 10.
- Acquaint yourself with the KLR 10 indicator and its functions.
- Preflight and operate the aircraft as you would normally.
- When in an area and at a safe altitude that safe operation at slow flight can be performed and the air is smooth, perform clearing turns to ensure the area is clear.
- Follow the aircraft procedures and slow the aircraft, in the clean configuration (No Flaps).
- Maintain coordination.
- Maintain altitude.
- Monitor the KLR 10 indicator.
- Slow to just above the stall. If any stall warning device activates or an impending aerodynamic stall is imminent, recover immediately using the appropriate procedure for your aircraft.
- Return to normal flight.
- Using the abbreviations from table 2-2 on page 2-4, write down the illuminated segments in the space provided below and in the Table 3-1: Observed Indications Chart on page 3-17.

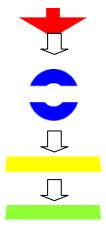
Operation P/N *D201306000109*Page 3-2 Rev 0 Jul 2013

Observed Indications

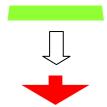
As the aircraft slows and the AOA increases, note the following:

The colored segments on the AOA indicator transitions from the **Green Bar** (G) segment (Cruise) up through to the **flashing Red arrow** (R3) segment.

A "Check AOA" warning annunciates as the AOA increases and the Red Bar with inverted Red Chevron (R1) segment is displayed.


A "Caution Too Slow" warning annunciates when the AOA increases more and the Red Arrow with inverted Red Chevron (R2) segment is displayed.

Start your recovery from the high AOA flight regime when the "Too slow! Too slow!" warning annunciates and the flashing Red arrow is displayed.


Note: If any stall warning device activates or an impending aerodynamic stall is imminent, recover immediately using the appropriate procedure for your aircraft.

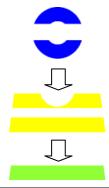
As the recovery progresses:

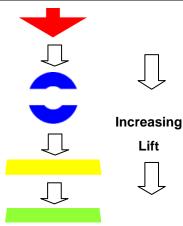
The AOA indicator transitions from the flashing Red Arrow segment through the Blue Circle (B) segment and continues through the Yellow Bars (Y2) segment until finally the Green Bar (G) segment (Cruise) is illuminated.

Follow the outline above again but perform the high AOA flight regime in the landing configuration (dirty) and observe the following:

The colored segments on the AOA indicator transitions from the **Green Bar** (G) segment (Cruise) up through to the **flashing Red Arrow** (R3) segment.

A "Check AOA" warning annunciates as the AOA increases and the Red Bar with inverted Red Chevron (R1) segment is displayed.


A "Caution. Too Slow" warning annunciates when the AOA increases more and the Red Bar with inverted Red Chevron (R2) segment is displayed.


Start your recovery from the high AOA flight regime when the "Too slow! Too slow!" warning annunciates and the flashing Red arrow is displayed.

Note: If any stall warning device activates or an impending aerodynamic stall is imminent, recover immediately using the appropriate procedure for your aircraft.

As the recovery progresses:

The AOA indicator transitions through the **blue circle** segment, **Yellow Bars** segment to finally the **Green Bar** segment (cruise, lots of lift).

The lower the segments, from flashing Red Arrow (R3) segment, Blue Circle (B) segment, Yellow Bar (Y1) segment and to the **Green Bar** (G) segment, the more the lift, (lower AOA).

Practice until you become familiar with the indications on the AOA and the relationship of your airspeed indicator. Since the airfoil on your aircraft will **ALWAYS** stall at the same AOA **(regardless of weight)** the AOA indications will be the same every time.

 Operation
 P/N D201306000109

 Page 3-6
 Rev 0 Jul 2013

3.2 PRACTICE TAKEOFF AND CLIMB USING AOA

The use of AOA for takeoff and climb performance will greatly increase the pilot's awareness while operating at high angles of attack and yield safe and consistent results.

For example if you intend to perform a short field over an obstacle takeoff there are a number of factors you must consider to arrive at the proper indicated airspeed for the climb. Changing gross weight, pressure altitude, temperature will all have an effect on the indicated climb speed. On the other hand, once you establish the correct AOA for the climb, it will be the same regardless of the factors previously mentioned.

To determine the correct AOA for a climb we need a base line to start from. For this example we will figure it out for Vx, (best angle of climb). Some aircraft may use two different speeds based on the aircraft configuration, let's use the one for clearing an obstacle on takeoff. Refer to the aircraft manual to determine the configuration and airspeed for Vx considering the following factors:

- Identify actual gross weight.
- Pressure altitude, at the demonstration altitude.
- Temperature, at the demonstration altitude.
- Correct CAS for installation errors to arrive at IAS.

P/N *D201306000109* Operation Rev 0 Jul 2013 *Page 3-7*

Establish Segments Illuminated

As before to familiarize you with the KLR 10 indications for V_x use the following outline as a guide:

- Plan a flight to an area where the desired maneuvers may be performed without any undue hazards.
- Acquaint yourself with the KLR 10 indicator.
- Preflight and operate the aircraft as you would normally.
- When in the area perform clearing turns to ensure the area is clear.
- Maintain coordination and altitude.
- Use power to slow and configure for Vx.
- Maintain the indicated airspeed for Vx.
- Observe the KLR 10 AOA indication and make a mental note.
- Return to normal flight.
- Using the abbreviations from table 2-2 on page 2-4, write down the illuminated segments in the space provided below and in the Table 3-1: Observed Indications Chart on page 3-17.

Segments Illuminated:

This AOA indication is accurate for future use at any gross weight or altitude, **every time.** Also this same method may be used to determine the AOA for any climb. Now try it for V_y, best rate of climb, using the procedure described above.

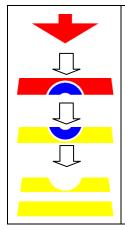
Operation P/N *D201306000109*Page 3-8 Rev 0 Jul 2013

Fly Practice Approaches for Familiarization

Now practice the use of the AOA for takeoff at airports that give you a comfortable margin. Then when you perfect the technique you can perform short field over an obstacle takeoffs safely. Use the following outline as a guide.

- Review your aircraft procedures for short field over an obstacle takeoff.
- Plan for a flight at an airport where normal takeoffs and landing may be performed.
- Preflight and operate the aircraft as you would normally.
- Perform the takeoff run as specified in the aircraft manual.
- At the specified takeoff speed rotate smoothly to the AOA for Vx.

CAUTION


Do not over rotate or rotate too rapidly as either will cause catastrophic results.

- When well above the obstacle decrease the AOA and clean up on schedule.
- Adjust the pitch to achieve the AOA for Vy and continue the climb.
- · Return to normal flight.
- Using the abbreviations from table 2-2 on page 2-4, write down the illuminated segments in the space provided below and in the Table 3-1: Observed Indications Chart on page 3-17.

Segments Illuminated:

P/N *D201306000109* Operation Rev 0 Jul 2013 *Page 3-9*

Observed Indications

As the aircraft accelerates down the runway the KLR 10 AOA indicator will start to illuminate with the flashing Red Arrow (R3) segment, then top half of the single Red Bar with Blue upper Half Circle (BR) segment, through to the combination of single upper Yellow Bar with Blue lower Half-Circle (YB) segments then just to the Yellow Bars (Y2) segment.

When the pitch is rotated up, the AOA indication will move towards V_x . Adjust the pitch to maintain the V_x angle.

To accelerate and clean up, the pitch is lowered, thus lowering the AOA and decreasing induced drag and increasing lift. This allows the aircraft to accelerate so the flaps can be retracted, the changes in AOA can be observed.

Operation P/N *D201306000109*Page 3-10 Rev 0 Jul 2013

3.3 PRACTICE BEST GLIDE SPEED

As mentioned earlier the AOA may be used for identifying aircraft performance based on a fixed AOA or a constant CL. For this discussion CL/CD Maximum indication will be identified. This is the maximum lift-to-drag ratio at which maximum range and maximum glide distance will be found for propeller airplanes.

To find the AOA for best glide calculate an indicated airspeed considering:

- Actual gross weight.
- Pressure altitude, at the demonstration altitude.
- Temperature, at the demonstration altitude.
- Correct CAS for installation errors to arrive at IAS.

Establish Segments Illuminated

As before, to familiarize you with the KLR 10 AOA indications for CL/CD Maximum use the following outline as a guide:

- Plan a flight to an area where the desired maneuvers may be performed without any undue hazards.
- Acquaint yourself with the KLR 10 display AOA indicator.
- Preflight and operate the aircraft as you would normally.
- When in the area perform clearing turns to ensure the area is clear.
- Maintain coordination.
- Maintain altitude.
- Use power to slow and maintain best glide speed.
- Observe the KLR 10 display AOA indication; this is CL/CD Maximum.
- Return to normal flight.
- Using the abbreviations from table 2-2 on page 2-4, write down the illuminated segments in the space provided below and in the Table 3-1: Observed Indications Chart on page 3-17.

Segments Illuminated:

P/N *D201306000109* Operation Rev 0 Jul 2013 *Page 3-11*

Segments Illuminated:

This AOA indication will be correct for future use at any gross weight, altitude, **every time.** Document the angles of attack by the segments illuminated in a permanent record for future use.

Example: Best Glide = single upper Yellow Bar with Blue lower Half Circle (YB) segment being illuminated.

The methods used to arrive at this AOA indication are the same for all constant AOA or CL maneuvers.

Operation P/N *D201306000109*Page 3-12 Rev 0 Jul 2013

3.4 PRACTICE APPROACHES USING AOA

A rule of thumb is to use an approach speed of 1.3 times the power off stall speed in the landing configuration. Another rule of thumb is in gusty winds add 5kts for one passenger and if it's really gusty add 10kts for several passengers. While flying the approach at higher speeds seems to be safer, having additional speed and kinetic energy on a short runway may not be in the best interest of said passengers. With the means to accurately know and control the AOA you can fly a more stable approach and land with less kinetic energy for any given situation than flying arbitrary approach speeds. Flying an approach and landing using an AOA indicator may be a safer procedure.

The AOA has been calibrated for an AOA just slightly less than CLMAX however an acceptable margin above that angle to fly approach and landings has not been determined. As a starting point use the aircraft manual to determine the stall speed of the aircraft at the **actual gross weight** in the landing configuration. Take that calibrated airspeed and multiply it by 1.3, 1.2 and 1.1. Then refer to the airspeed correction chart to determine the correction, if any, to convert from calibrated airspeed to indicated airspeed for the three speeds. For example:

Calibrated Stall Speed X 1.3 = App. CAS \pm the correction = App. IAS

58 kts CAS X 1.3 = 75.4 kts CAS + 2 kts correction = 77 kts IAS

58 kts CAS X 1.2 = 69.6 kts CAS + 3 kts correction = 73 kts IAS

58 kts CAS X 1.1 = 63.8 kts CAS + 4 kts correction = 68 kts IAS

For ease of discussion, let's call these speeds and the resulting AOA indication as 3, 2 and 1 respectively. Once the AOA angles have been identified they will be accurate at any gross weight, every time.

P/N *D201306000109* Operation Rev 0 Jul 2013 *Page 3-13*

Establish Segments Illuminated

To establish the AOA indications for approaches, use the following outline as a guide:

- Plan a flight to an area where approaches and slow flight can be performed without any undue hazards (reference § 91.303 & § 91.305).
- Review the stall recovery procedures for your aircraft in case of an inadvertent stall. If an inadvertent stall occurs, immediately recover from the stall using per your training and the aircraft manufacturers instructions. At no time is a stall required to correctly calibrate or operate the KLR 10.
- Acquaint yourself with the KLR 10 display AOA indicator.
- Preflight and operate the aircraft as you would normally.
- When in an area where approaches and slow flight can be performed and the air is smooth, perform clearing turns to ensure the area is clear.
- Follow the aircraft procedures, slow and configure to the landing configuration.
- Maintain coordination.
- Maintain altitude with the pitch (use pitch trim to relieve back pressure).
- Use power as needed to maintain flight at the first of the calculated approach speeds, "3".
- Write down the colored segments illuminated.
- Use power as needed to slow to and maintain flight at the second of the calculated approach speeds, "2".
- Write the new segments illuminated.

- Use power as needed to slow to and maintain flight at the third of the calculated approach speeds, "1".
- Return to normal flight.
- Write the new segments illuminated.

- Write the segments illuminated for the 3 approaches in the Table
 3-1: Observed Indications Chart on page 3-17.

Operation P/N *D201306000109*

Fly Practice Approaches for Familiarization

To familiarize you with the aircraft while flying practice approaches using the KLR 10 Indicator as a guide please use the following outline:

- Plan a flight to an area where approaches and slow flight can be performed without any undue hazards (reference § 91.303 & § 91.305).
- Review the stall recovery procedures for your aircraft.
- Acquaint yourself with the KLR 10 indicator.
- Preflight and operate the aircraft as you would normally.
- When in an area where approaches and slow flight can be performed and the air is smooth, perform clearing turns to ensure the area is clear.
- Follow the aircraft procedures, slow and configure to the landing configuration:
- Maintain coordination.
- Set the power as you would to fly a normal approach.
- Maintain altitude with the pitch until the AOA approaches the "3" indication, lower and use pitch to maintain that AOA (use pitch trim to relieve back pressure).
- Fly the aircraft in the descent (straight & turning), pay attention to the flight control effectiveness.
- Perform a recovery from the high AOA condition prior to any aerodynamic or aural/visual stall warning using the manufacturer's instructions for your aircraft.
- Climb back to the initial altitude.

P/N *D201306000109* Operation Rev 0 Jul 2013 *Page 3-15*

Repeat the steps above using AOA indications "2" and "1". Gain experience by practicing these simulated approaches and landings using the AOA indicator.

Some noticed observations:

- The control effectiveness decreased with higher AOA.
- The higher the AOA, the more attention has to be given to rudder inputs to compensate for adverse yaw.
- Approaches at the higher angles of attack left little time between starting the flair and stall.

Useful Techniques when using KLR 10 Indicator

Some techniques and things to consider when using the KLR 10 Indicator to fly approaches are:

- Coordinate the use of pitch and power to fly the approach and landing.
- Use PITCH primarily to control the AOA.
- Use POWER primarily to control the descent rate.
- Keep in mind how much power it took to just maintain altitude.
- A stable approach all the way to the runway is much safer than making radical changes to the AOA or descent rate once an obstacle is cleared.
- Set a safe standard for yourself using all your experience to set a maximum AOA for any approach and do not let pressures cause you to fly an approach at too high of AOA.
- When flying in gusty conditions fly a lower AOA so that when a wind gust changes your AOA it does not exceed your maximum AOA.
- Having a great new system to indicate AOA does NOT change the laws of physics, use it as a new tool to fly safe.

Operation P/N *D201306000109*Page 3-16 Rev 0 Jul 2013

Write down the actual indications you observe on the KLR 10 Indicator as you conduct the different phases of flight.

Table 3-1: Observed Indications Chart

Segment Illuminated	ABBR
+	R3
$\mathbf{\rangle}$	R2
	R1
	BR
	В
	YB
	Y3
	Y2
	Y1
	G

Phase of Flight	Flaps Up (Clean)	Flaps Down (Dirty)
High AOA (pre-stall)		
Climb Vx		
Climb Vy		
Cruise		
Best Glide Speed		
Approache s		
1.3 Vs		
1.2 Vs		
1.1 Vs		

NOTES			

4. APPENDIX

4.1 ACRONYMS AND ABBREVIATIONS

Acronyms and abbreviations used in this manual are defined as follows:

TERMS	DEFINITION
AOA	Angle of Attack
CL	Coefficient of Lift
CLmax	Coefficient of Lift Maximum
CD	Coefficient of Drag
CL/CD	Coefficient of Lift over Coefficient of Drag
FAA	Federal Aviation Administration
IF module	Interface Module
IA	Inspection Authorization
kts	Nautical miles per hour
MAC	Mean Aerodynamic Cord ()
OAA	Optimum Alpha Angle
Vs	Stall Speed – clean
Vx	Speed that allows for best angle of climb
Vy	Speed that allows for the best rate of climb

4.2 HONEYWELL-CONFIDENTIAL

THIS COPYRIGHTED WORK AND ALL INFORMATION **PROPERTY** ARE THE OF HONEYWELL INTERNATIONAL INC., CONTAIN TRADE SECRETS AND MAY NOT, IN WHOLE OR IN PART, BE USED, DUPLICATED, OR DISCLOSED FOR ANY PURPOSE WRITTEN WITHOUT PRIOR PERMISSION HONEYWELL INTERNATIONAL INC. ALL RIGHTS RESERVED.

Honeywell Materials License Agreement

The documents and information contained herein ("the Materials") are the proprietary data of Honeywell International Inc. and Honeywell Intellectual Properties Inc (collectively "Honeywell"). These Materials are provided for exclusive use of Honeywell Service Centers: Honeywell-authorized repair facilities: operators Honeywell aerospace products subject to an applicable product support agreement, their wholly ownedsubsidiaries or a formally designated third party service provider there under; and direct recipients of Materials Honeywell's Aerospace Technical Distribution. The terms and conditions of this License Agreement govern your use of these Materials, except to the extent that any terms and conditions of another applicable agreement with Honeywell regarding the operation, maintenance, or repair of Honeywell aerospace products conflict with the terms and conditions of this License Agreement, in which case the terms and conditions of the other agreement will govern. However, this License Agreement will govern in the event of a conflict between its terms and conditions and those of a purchase order or acknowledgement.

1. License Grant - If you are a party to an applicable product support agreement, a Honeywell Service Center agreement, or an authorized repair facility agreement, Honeywell hereby grants you a limited, non-exclusive license to use these Materials to operate, maintain, or repair Honeywell aerospace products only in accordance with that agreement. If you are a direct recipient of Honeywell's Aerospace Technical Materials from Publication Distribution and are not a party to an agreement related to the operation, maintenance or repair of Honeywell

P/N D201306000109 **Appendix**

aerospace products, Honeywell hereby grants you a limited, non-exclusive license to use these Materials to maintain or repair the subject Honeywell aerospace products only at the facility to which these Materials have been shipped ("the Licensed Facility"). Transfer of the Materials to another facility owned by you is permitted only if the original Licensed Facility retains no copies of the Materials and you provide prior written notice to Honeywell.

- 2. Rights In Materials Honeywell retains all rights in these Materials and in any copies thereof that are not expressly granted to you, including all rights in patents, copyrights, trademarks, and trade secrets. No license to use any Honeywell trademarks or patents is granted under this License Agreement.
- **3. Confidentiality -** You acknowledge that these Materials contain information that is confidential and proprietary to Honeywell. You agree to take all reasonable efforts to maintain the confidentiality of these Materials.
- **4. Assignment And Transfer -** This License Agreement may be assigned to a formally designated service designee to the extent allowed under an applicable product support agreement or transferred to a subsequent owner or operator of an aircraft containing the subject Honeywell aerospace products. However, the recipient of any such assignment or transfer must assume all of your obligations under this License Agreement. No assignment or transfer shall relieve any party of any obligation that such party then has hereunder.
- **5. Copies of Materials -** Unless you have the express written permission of Honeywell, you may not make or permit making of copies of the Materials. Notwithstanding the foregoing, you may make copies of only portions of the Material for your internal use. You agree to return the Materials and any copies thereof to Honeywell upon the request of Honeywell.
- **6. Term** This License Agreement is effective until terminated as set forth herein. This License Agreement will terminate immediately, without notice from Honeywell, if you fail to comply with any provision of this License Agreement or will terminate simultaneously with the termination or expiration of your applicable product support agreement, authorized repair facility agreement, or your formal designation as a third party service provider. Upon termination of this License Agreement, you will return these Materials to Honeywell without retaining any copies and will have one of your authorized officers certify that all Materials have been returned with no copies retained.
- **7. Remedies -** Honeywell reserves the right to pursue all available remedies and damages resulting from a breach of this License Agreement.

P/N *D201306000109* Appendix Rev 0 Jul 2013 *Page 4-3*

- 8. Limitation of Liability Honeywell does not make any representation regarding the use or sufficiency of the Materials. THERE ARE NO OTHER WARRANTIES, WHETHER WRITTEN OR ORAL, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, (i) WARRANTIES ARISING FROM COURSE OF PERFORMANCE, DEALING, USAGE, OR TRADE, WHICH ARE HEREBY EXPRESSLY DISCLAIMED, OR (ii) WARRANTIES AGAINST INFRINGEMENT OF INTELLECTUAL OF PROPERTY RIGHTS THIRD PARTIES. EVEN ANY HONEYWELL HAS **BEEN** ADVISED OF SUCH INFRINGEMENT. IN NO EVENT WILL HONEYWELL BE LIABLE DAMAGES. INCIDENTAL CONSEQUENTIAL FOR ANY DAMAGES, SPECIAL DAMAGES, INDIRECT DAMAGES, LOSS OF PROFITS, LOSS OF REVENUES, OR LOSS OF USE, EVEN IF INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. TO THE EXTENT PERMITTED BY APPLICABLE LAW. THESE LIMITATIONS AND EXCLUSIONS WILL APPLY REGARDLESS OF WHETHER LIABILITY ARISES FROM BREACH OF CONTRACT, WARRANTY, TORT (INCLUDING BUT NOT LIMITED TO NEGLIGENCE), BY OPERATION OF LAW, OR OTHERWISE.
- **9. Controlling Law -** This License shall be governed and construed in accordance with the laws of the State of New York without regard to the conflicts of laws provisions thereof. This license sets forth the entire agreement between you and Honeywell and may only be modified by a writing duly executed by the duly authorized representatives of the parties.

4.3 COPYRIGHT - NOTICE

Copyright 2013, Honeywell International Inc. All rights reserved. Honeywell is a registered trademark of Honeywell International Inc.

All other marks are owned by their respective companies.

Appendix P/N *D201306000109*Page 4-4 Rev 0 Jul 2013