AVIATION MECHANIC HANDBOOK

Based on the original text by

DALE CRANE

Edited by

TERRY MICHERHUIZEN

7TH EDITION
Contents

Introduction ... iii
Section 1: General Information .. 1
 1.1 Fraction, Decimal, and Metric Equivalents ... 3
 1.2 Conversions ... 4
 1.3 Aircraft Nomenclature .. 13
 Axes of an Airplane .. 13
 Forces Acting on an Aircraft in Flight .. 13
 Types of Aircraft Structure .. 14
 Truss .. 14
 Monocoque .. 14
 Semimonocoque .. 15
 1.4 Joint Aircraft System/Component (JASC) Code .. 16
 1.5 Aircraft Nationality Identification ... 28
 1.6 Title 14 of the Code of Federal Regulations ... 31
 1.7 Standard Taxi Signals .. 34
 1.8 Troubleshooting ... 35

Section 2: Physical and Chemical .. 37
 Periodic Table of Elements ... 38
 2.1 Temperature Conversion ... 39
 Absolute Temperature .. 44
 2.2 ICAO Standard Atmosphere .. 45
 2.3 Density of Various Solids and Liquids .. 46
 Density of Various Gases .. 46
 2.4 Hydraulic Relationships .. 47
 2.5 Quantity of Liquid in a Drum ... 49
 Estimating Quantity of Liquid in a Standard 55-Gallon Drum 49
Section 3: Mathematics ... 51

3.1 Measurement Systems .. 53
 The International System of Units (SI) 53
 The Metric System .. 53
 U.S. – Metric Conversion ... 54
 Length .. 54
 Weight .. 54
 Volume ... 54

3.2 Mathematical Constants .. 56

3.3 Mathematical Symbols ... 57

3.4 Squares, Square Roots, Cubes, Cube Roots of Numbers 58

3.5 Diameter, Circumference and Area of a Circle 61

3.6 Geometric Formulas ... 64
 Triangle ... 64
 Square ... 64
 Rectangle .. 64
 Parallelogram ... 64
 Trapezoid .. 64
 Regular Pentagon .. 65
 Regular Hexagon .. 65
 Regular Octagon .. 65
 Circle .. 65
 Ellipse ... 65
 Sphere ... 66
 Cube .. 66
 Rectangular Solid .. 66
 Cone .. 66
 Cylinder ... 66

3.7 Trigonometric Functions ... 67

Section 4: Aircraft Drawings .. 71

4.1 Types of Aircraft Drawings .. 73
 Sketches ... 73
 Detail Drawings ... 73
 Assembly Drawings .. 73
 Installation Drawings .. 73
 Sectional Drawings ... 73
 Cutaway Drawing .. 73
 Exploded-View Drawing .. 73
 Schematic Diagram ... 74
 Block Diagram .. 74
Section 5: Aircraft Electrical Systems

5.1 Electrical Symbols

5.2 Alternating Current Terms and Values

5.3 Ohm’s Law Relationships

5.4 Electrical Formulas
 Formulas Involving Resistance
 Formulas Involving Capacitance
 Formulas Involving Inductance
 Formulas Involving Both Capacitance and Inductance

5.5 Electrical System Installation
 Selection of Wire Size
 Notes on Wire Installation
 Switch Derating Factors
 Wire and Circuit Protectors
 MS Electrical Connectors
 Resistor Color Code
 Aircraft Storage Batteries
 Lead-Acid Batteries
 Nickel-Cadmium Batteries

Section 6: Aircraft Materials

6.1 Composition of Wrought Aluminum Alloys

6.2 Four-Digit Designation System for Wrought Aluminum Alloys

6.3 Weldable and Unweldable Aluminum Alloys

6.4 Mechanical Properties of Aluminum Alloys
6.5 Temper Designations for Aluminum Alloys .. 123
 Heat-Treatable Alloys ... 123
 Non-Heat-Treatable Alloys .. 123

6.6 Temperatures for Heat Treatment of Aluminum Alloys 124

6.7 Bearing Strength (in pounds) of Aluminum Alloy Sheet 125

6.8 Shear Strength of Aluminum Alloy Rivets 126
 Single-Shear Strength (in pounds) of Aluminum-Alloy Rivets 126
 Double-Shear Strength (in pounds) of Aluminum-Alloy Rivets 126

6.9 SAE Classification of Steel .. 127

6.10 Strength of Steel Related to its Hardness 128

6.11 Color of Steel for Various Temperatures 129

6.12 Color of Oxides on Steel at Various Tempering Temperatures 130

Section 7: Tools for Aircraft Maintenance .. 131

7.1 Measuring and Layout Tools ... 133
 Steel Rule .. 133
 Hook Rule .. 133
 Combination Set .. 133
 Dividers .. 134
 Outside Calipers ... 134
 Inside Calipers ... 134
 Hermaphrodite Calipers ... 134
 Scriber ... 134
 Vernier Calipers ... 134
 How to Read the Vernier Scale .. 135
 Micrometer Caliper ... 136
 How to Read the Vernier Micrometer Scale 137
 Dial Indicator ... 138
 Feeler Gages ... 138
 Small-Hole Gages ... 138
 Telescoping Gages ... 138

7.2 Holding Tools ... 139
 Vises ... 139
 Bench Vise .. 139
 Drill Press Vise .. 139
 Pliers ... 139
 Combination/Slip Joint Pliers .. 139
 Water Pump Pliers ... 140
 Vise-Grip® Pliers ... 140
 Needle-Nose Pliers ... 140
7.3 Safety Wiring Tools
- Diagonal Cutting Pliers: 141
- Duckbill Pliers: 141
- Safety Wire Twisting Tool: 141

7.4 Bending and Forming Tools
- Tools for Making Straight Bends and Curves: 142
 - Cornice Brake: 142
 - Box Brake: 142
 - Press Brake: 142
 - Slip Roll Former: 143
- Forming Compound Curves in Sheet Metal: 143
- English Wheel: 143

7.5 Cutting Tools
- Shears: 143
 - Throatless Shears: 143
 - Squaring Shears: 144
 - Scroll Shears: 144
- Hand Shears: 144
 - Tin Snips: 144
 - Compound Shears: 145
- Saws: 145
 - Band Saw: 145
 - Hacksaw: 146
- Wood Saws: 146
 - Crosscut Saw: 146
 - Ripsaw: 146
- Compass, or Keyhole Saw: 146
- Backsaw: 147
- Chisels: 147
 - Flat Chisel: 147
 - Cape Chisel: 147
 - Diamond Point Chisel: 147
 - Round Nose Chisel: 147
- Files: 148

7.6 Hole Cutting Tools
- Twist Drills: 149
- Twist Drill Sizes: 149
- Drill Gage: 152
- Twist Drill Sharpening: 152
- Drill Point Gage: 153
- Large Hole Cutters: 154
- Hole Saws: 154
- Fly Cutter: 154
- Countersink: 154
- Reamers: 155
Drills for Wood and Composite Materials .. 155
Auger Bits ... 155
Forstner Bits .. 156
Flat Wood-Boring Bits ... 156
Brad-Point Drills .. 156
Spade Drill .. 156

7.7 Threads and Threading Tools .. 157
Unified and American Standard Thread Form 157
Thread-Cutting Tools .. 157
Taps .. 158
Body and Tap Drill Sizes ... 158
Screw Pitch Gage .. 159

7.8 Torque and Torque Wrenches .. 160
Click-Type Torque Wrench .. 160
Deflecting-Beam Torque Wrench .. 160
Torque Conversions .. 162
Recommended Torque Values .. 162

7.9 Pounding Tools ... 164
Carpenter's Claw Hammer .. 164
Ball Peen Hammer .. 164
Metalworking Hammers .. 164
Straight Peen and Cross Peen Hammers 164
Body, or Planishing Hammer .. 164
Mallets and Soft-Face Hammers .. 165
Sledge Hammers ... 165

7.10 Punches .. 165
Prick Punch .. 165
Center Punch .. 165
Drift, or Starting Punch ... 165
Pin Punch .. 165
Transfer Punch .. 166
Automatic Center Punch .. 166

7.11 Wrenches ... 167
Open End Wrench ... 167
Adjustable Open End Wrench ... 167
Ratcheting Open End Wrench ... 167
Box End Wrench ... 168
Ratcheting Box Wrench ... 168
Combination Wrench ... 168
Flare Nut Wrench ... 168
Socket Wrenches ... 169
Socket Wrench Handles ... 169
Hand Impact Tool .. 169
Typical Socket Wrenches .. 170
Extension and Adapters .. 170
Allen Wrenches .. 170

7.12 Screwdrivers .. 171
Slot Screwdrivers ... 171
Offset Screwdriver ... 171
Recessed-Head Screwdrivers ... 171
Phillips Head Screwdriver Sizes 172
Screw Heads for Special Structural Screws 172

Section 8: Aircraft Hardware ... 173

8.1 Standards ... 175

8.2 Threaded Fasteners ... 175
Bolts ... 175
 Genuine A/C Hardware AN3-AN20 Bolts 176
 Hex-Head Bolts ... 177
Flush-Head Bolts .. 178
Drilled-Head Bolts .. 178
Twelve-Point, Washer-Head Bolts 178
Internal Wrenching Bolts .. 178
Clevis Bolts ... 179
Eye Bolts .. 179
Bolt Installation .. 179
Bolt Fits ... 180
Screws .. 180
Aircraft Screw Heads ... 181
 Set Screws .. 182
 Self-Tapping Sheet-Metal Screws 182
Nuts ... 183
 Nonlocking Nuts .. 183
 Self-Locking Nuts .. 184
 Low-temperature locking nuts 184
 High-temperature locking nuts 185
Wing Nuts .. 185
Anchor Nuts .. 185
Channel Nuts .. 186
Pressed-Steel Nuts ... 186
Instrument Nuts ... 187
Rivnuts ... 187
Threaded Fastener Safeguard 188
 Locking Washers ... 188
 Cotter Pins .. 188
 Safety Wire and Safety Wire Twisting 189
 Safety Cable ... 191
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Washers</td>
<td>192</td>
</tr>
<tr>
<td>8.4</td>
<td>Special Rivets</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Blind Rivets</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Friction-Lock Rivets</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Mechanical-Lock Rivets</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>CherryMax Rivets, Olympic-Lok Rivets, Huck Rivets</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>High-Strength Pin Rivets</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Hi-Shear Rivet</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Hi-Lok Fasteners</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Hi-Tigue Fasteners</td>
<td>200</td>
</tr>
<tr>
<td>8.5</td>
<td>Cowling Fasteners</td>
<td>201</td>
</tr>
<tr>
<td>8.6</td>
<td>Thread Repair Hardware</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Helicoil Insert</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Acres Sleeves</td>
<td>203</td>
</tr>
</tbody>
</table>

Section 9: Metal Aircraft Fabrication .. 205

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Sheet Metal Layout and Forming</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Definitions</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Layout Procedure</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Example</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Forming</td>
<td>210</td>
</tr>
<tr>
<td>9.2</td>
<td>Minimum Bend Radii for 90° Bends in Aluminum Alloys</td>
<td>211</td>
</tr>
<tr>
<td>9.3</td>
<td>Setback</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Setback (K) Chart</td>
<td>212</td>
</tr>
<tr>
<td>9.4</td>
<td>Bend Allowance Chart</td>
<td>215</td>
</tr>
<tr>
<td>9.5</td>
<td>Rivets and Riveting</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Alternatives to Riveting</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Aircraft Solid Rivets</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Rivet Head Shapes</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Rivet Material</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Rivet Diameter</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Examples of Rivet Selection</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Rivet Length</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Riveting Tools</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Rivet Sets</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Bucking Bars</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Installing Flush Rivets</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Blind Rivet Code</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Removal of Damaged Rivets</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Minimum Rivet Spacing and Edge Distance</td>
<td>226</td>
</tr>
</tbody>
</table>
Section 10: Aircraft Fabric Covering ... 229
10.1 Rib Stitch Spacing... 231
10.2 Rib Stitch Knots... 232

Section 11: Corrosion Detection and Control 235
11.1 Types of Corrosion ... 237
11.2 Oxidation ... 239
11.3 Surface and Pitting Corrosion ... 240
11.4 Intergranular Corrosion .. 241
 Exfoliation Corrosion ... 241
11.5 Stress Corrosion ... 242
11.6 Galvanic Corrosion ... 242
11.7 Concentration Cell Corrosion ... 243
11.8 Fretting Corrosion ... 244
11.9 Filiform Corrosion .. 244
11.10 Corrosion Control ... 245

Section 12: Nondestructive Inspection 247
12.1 Visual Inspection ... 249
 NDI .. 249
 Visual Inspection ... 249
 Surface Visual Inspection ... 249
 Internal Visual Inspection ... 249
12.2 Tap Testing .. 250
12.3 Penetrant Inspection ... 251
12.4 Magnetic Particle Inspection .. 252
12.5 Eddy Current Inspection ... 253
 How it works ... 253
 What it is suited for ... 254
 Method ... 254
 Detection of corrosion ... 254
12.6 Ultrasonic Inspection ... 255
Section 17: Composites ... 293
 17.1 Resin Systems—Typical Properties 295
 17.2 Resin Mix Ratios ... 296
 17.3 Fiber/Resin Ratio Formulas .. 297
 17.4 Reinforcing Fibers .. 298
 17.5 Textile and Fiber Terminology .. 299
 17.6 Yarn Part Numbering Systems ... 300
 17.7 Fabric Weave Styles .. 301
 17.8 Common Weave Style Numbers and Features 303
 17.9 Ply Orientation Conventions ... 304
 17.10 Damage Removal—Scarifying and Stepping 304
 17.11 Core Materials ... 306
 17.12 Bleeder Schedules .. 307

Section 18: Turbine Engines ... 309
 18.1 Turbine Operating Principles .. 311
 18.2 Types of Turbine Engines .. 311
 18.3 Turbine Engine Sections ... 312

Appendices ... 313
 Appendix 1 Hydraulic Fittings .. 315
 Appendix 2 Engines ... 319
 Appendix 3 Lead Acid Aircraft Batteries 321
 Appendix 4 Aircraft Tires .. 349

Index .. 361
8.1 Standards

In the past, most manufacturers used standard aircraft parts that had been engineered and approved by the Army and Navy, with their specifications issued as AN standards. AN standard parts were easy to identify and their numbering system was relatively simple. But with the introduction of the turbine engine and high-speed, high-performance aircraft, aircraft hardware has become a much more complex and critical field. AN standards were replaced by Air Force-Navy standards; then other standards were developed—some of the more important standards are listed below:

AN—Air Force / Navy Standards
NAS—National Aerospace Standards
MS—Military Standards
AMS—Aeronautical Material Specifications
SAE—Society of Automotive Engineers
MIL—Military Specifications

The task of looking at markings on a part and measuring it to determine its part number is now a thing of the past. Many parts look alike, but their materials or tolerances can be quite different. Any replacement hardware must be the part number specified in the aircraft or engine parts manual, and each piece of hardware must be purchased from a source known to be reputable. Look-alike parts that might be of inferior strength can jeopardize the safety of an aircraft. The most commonly used parts and pertinent facts about their proper use are listed in this Section. AMTs should become familiar with the parts manuals for the aircraft and engines he or she is working on to find the correct part number for each piece of hardware used.

8.2 Threaded Fasteners

Bolts
The most common type of threaded fastener, available in a number of materials such as nickel steel, aluminum alloy, corrosion-resistant steel, and titanium. Different types of heads for special purposes and different thread pitches adapt them to special functions.
<table>
<thead>
<tr>
<th>AN #</th>
<th>BASIC</th>
<th>THREAD</th>
<th>DIA. MAX</th>
<th>DIA. MIN</th>
<th>WRENCH SIZE</th>
<th>HOLE, SHANK +.010, -.000</th>
<th>HOLE, HEAD +.010, -.000</th>
<th>COMMONLY USED STEEL COTTER</th>
<th>COMMONLY USED STAINLESS COTTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN3</td>
<td>10–32</td>
<td>.189</td>
<td>.186</td>
<td>3/8"</td>
<td>.070</td>
<td>.046</td>
<td>MS24665-132</td>
<td>MS24665-151</td>
<td></td>
</tr>
<tr>
<td>AN4</td>
<td>1/4–28</td>
<td>.249</td>
<td>.246</td>
<td>7/16"</td>
<td>.076</td>
<td>.046</td>
<td>MS24665-132</td>
<td>MS24665-151</td>
<td></td>
</tr>
<tr>
<td>AN5</td>
<td>5/16–24</td>
<td>.312</td>
<td>.309</td>
<td>1/2"</td>
<td>.076</td>
<td>.070</td>
<td>MS24665-210</td>
<td>MS24665-229</td>
<td></td>
</tr>
<tr>
<td>AN6</td>
<td>3/8–24</td>
<td>.374</td>
<td>.371</td>
<td>9/16"</td>
<td>.106</td>
<td>.070</td>
<td>MS24665-283</td>
<td>MS24665-300</td>
<td></td>
</tr>
<tr>
<td>AN7</td>
<td>7/16–20</td>
<td>.437</td>
<td>.433</td>
<td>5/8"</td>
<td>.106</td>
<td>.070</td>
<td>MS24665-283</td>
<td>MS24665-300</td>
<td></td>
</tr>
<tr>
<td>AN8</td>
<td>1/2–20</td>
<td>.499</td>
<td>.495</td>
<td>3/4"</td>
<td>.106</td>
<td>.070</td>
<td>MS24665-285</td>
<td>MS24665-302</td>
<td></td>
</tr>
<tr>
<td>AN9</td>
<td>9/16–18</td>
<td>.562</td>
<td>.558</td>
<td>7/8"</td>
<td>.141</td>
<td>.070</td>
<td>MS24665-353</td>
<td>MS24665-370</td>
<td></td>
</tr>
<tr>
<td>AN10</td>
<td>5/8–18</td>
<td>.624</td>
<td>.620</td>
<td>15/16"</td>
<td>.141</td>
<td>.070</td>
<td>MS24665-355</td>
<td>MS24665-372</td>
<td></td>
</tr>
<tr>
<td>AN12</td>
<td>3/4–16</td>
<td>.749</td>
<td>.744</td>
<td>1+1/16"</td>
<td>.141</td>
<td>.070</td>
<td>MS24665-355</td>
<td>MS24665-372</td>
<td></td>
</tr>
<tr>
<td>AN14</td>
<td>7/8–14</td>
<td>.874</td>
<td>.869</td>
<td>1+1/4"</td>
<td>.141</td>
<td>.070</td>
<td>MS24665-357</td>
<td>MS24665-374</td>
<td></td>
</tr>
<tr>
<td>AN16*</td>
<td>1"–14</td>
<td>.999</td>
<td>.993</td>
<td>1+1/2"</td>
<td>.141</td>
<td>.070</td>
<td>MS24665-359</td>
<td>MS24665-376</td>
<td></td>
</tr>
<tr>
<td>AN17</td>
<td>1"–12</td>
<td>.999</td>
<td>.993</td>
<td>1+1/2"</td>
<td>.141</td>
<td>.070</td>
<td>MS24665-359</td>
<td>MS24665-376</td>
<td></td>
</tr>
<tr>
<td>AN18</td>
<td>1 1/8–12</td>
<td>1.124</td>
<td>1.118</td>
<td>1+5/8"</td>
<td>.141</td>
<td>.070</td>
<td>MS24665-359</td>
<td>MS24665-376</td>
<td></td>
</tr>
<tr>
<td>AN20</td>
<td>1 1/4–12</td>
<td>1.249</td>
<td>1.243</td>
<td>1+7/8"</td>
<td>.141</td>
<td>.070</td>
<td>MS24665-360</td>
<td>MS24665-377</td>
<td></td>
</tr>
</tbody>
</table>

*The thread pitch 1"–14 became INACTIVE FOR DESIGN after June 1966.

Table reproduced with permission from General Aircraft Hardware Company catalog (www.gen-aircraft-hardware.com)
Hex-Head Bolts

The standard bolt used in airframe and powerplant construction, designed for both tensile and shear loads. They depend on the proper application of torque for the strength of the joint. Available with both UNC and UNF threads, made of SAE 2330 nickel steel, 2024 aluminum alloy, corrosion resistant steel, and titanium. Most have a medium (class 3) fit and most of the steel bolts are cadmium-plated. Also available with holes drilled through the head for safety wire, and/or with a hole through the shank for a cotter pin. The material or bolt type is identified by marks on the head. Close-tolerance bolts, identified by a triangle, are ground to a fit of ±0.0005 inch and the ground surface is not plated, but is protected from rust with grease.

Bolt Head Identification Marks

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AN3-AN20—Standard alloy steel hex-head aircraft bolt</td>
</tr>
<tr>
<td>B</td>
<td>AN3DD-AN20DD—Standard aluminum alloy hex-head aircraft bolt</td>
</tr>
<tr>
<td>C</td>
<td>AN3C-AN20C—Standard corrosion resistant steel hex-head aircraft bolt</td>
</tr>
<tr>
<td>D</td>
<td>AN73-AN81—Drilled-head aircraft bolt</td>
</tr>
<tr>
<td>E</td>
<td>AN173-AN182—Close-tolerance bolt</td>
</tr>
<tr>
<td>F</td>
<td>AN101001-AN103600—Alloy steel hex-head aircraft bolt</td>
</tr>
<tr>
<td>G</td>
<td>AN103701-AN104600—Drilled-head aircraft bolt</td>
</tr>
<tr>
<td>H</td>
<td>AN104601-AN105500—Corrosion resistant steel aircraft bolt</td>
</tr>
<tr>
<td>I</td>
<td>AN107301-AN108200—Corrosion resistant steel drilled-head aircraft bolt</td>
</tr>
<tr>
<td>J</td>
<td>NAS464—Close-tolerance bolt</td>
</tr>
<tr>
<td>K</td>
<td>NAS501—Corrosion resistant steel hex-head aircraft bolt</td>
</tr>
<tr>
<td>L</td>
<td>NAS1103-NAS1112—Alloy steel hex-head aircraft bolt</td>
</tr>
</tbody>
</table>
Flush-Head Bolts
Many modern aircraft applications require high-strength bolts with heads that can be flush with the outside skin of the aircraft. Most bolts in the NAS and MS series have a 100° head, but some have an 82° head. These high-strength bolts are made of alloy steel and titanium and some have self-locking inserts in the threads.

Drilled-Head Bolts
Drilled-head airframe bolts are used in locations where a high tensile strength is required and where the bolt is safetied with safety wire. There is no hole in the shank for a cotter pin.

Twelve-Point, Washer-Head Bolts
Designed for special high-strength and high-temperature airframe and powerplant applications; available in both NAS and MS series. The heads of many of these bolts are drilled for safety wire.

Internal Wrenching Bolts
These are the typical high-strength alloy steel bolts used in special airframe applications where severe loads are imposed on the structure. They have a radius between the shank and the head, and a special chamfered, heat-treated steel washer (such as the NAS 143C) is used under the head to provide a bearing surface. Turned with a hex wrench which fits into the socket in the head.
Clevis Bolts

Designed for shear loads only. To prevent them from being used for tensile loads, the head is shallow and has a slot or recess for turning with a screwdriver. The threads are short to take a thin nut, and there is a notch between the threads and the shank. Most have a drilled shank so a cotter pin can be used to prevent the nut from backing off. A typical application is the attachment of a cable to a control horn: the bolt is installed and the nut is tightened just enough that the cable terminal is free to move on the horn.

Eye Bolts

Used to attach wires and cables to aircraft structure; made of alloy steel, cadmium-plated, and available with or without drilled shanks.

Bolt Installation

Almost all hex-head bolts have a round, smooth, washer-like bearing surface just below the head. This surface prevents the edges of the head from damaging the surface of the component into which the bolt is installed. If there is no such surface, a washer should be placed under the head.

Also, always place a washer under the nut to provide a good bearing surface and prevent damage to the component as the nut is tightened.

The bolt length should be chosen so that the grip length (the length of the unthreaded shank) is the same as the thickness of the materials being joined. The nut must never be screwed down against the last thread on the bolt. If the grip length is too long, use plain washers to act as shims to prevent the nut reaching the last thread. **Bolts must be installed in exactly the way the aircraft or engine maintenance manual specifies.** If there is no information of this nature, bolts should be installed with the head upward, forward, or inboard. These orientations normally aid in preventing the bolt from falling out if the nut were not screwed on.

Some bolts have holes drilled in the threaded portion of the shank for cotter pins to secure a castellated nut. If a self-locking nut is to be used on a drilled shank bolt, be sure that the edges of the hole are chamfered to prevent the sharp edges from cutting threads in the nut insert.
Bolt Fits

If there is any looseness or play in a threaded joint, vibration can produce a cyclic stress that can further loosen the fastener and lead to destruction. Aircraft design engineers calculate the stresses that will affect every joint, and the fasteners are designed to produce a stress within the joint greater than any anticipated applied stress. This bolt stress is determined by the fit of the bolt in the bolt hole, and by the torque applied (see Pages 160–163). The maintenance manual usually specifies the drill size for all bolt holes. If no drill size is specified, it is normally satisfactory to use the next larger number drill (smaller number) than the shank diameter of the bolt being installed. Example: a #12 drill (0.1890) can be used for a 3/16-inch (0.1875) bolt. Some manuals specify a type of drive fit for the bolt in which the hole is drilled slightly undersize and reamed to the diameter that will provide the desired fit (see table below):

<table>
<thead>
<tr>
<th>Type of fit</th>
<th>How to drill/ream hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose fit</td>
<td>Use a drill number one size larger than the diameter of bolt. Hole is 0.002 to 0.005 inch larger than bolt shank.</td>
</tr>
<tr>
<td>Push fit</td>
<td>Reamed fit—allows bolt to be forced into the hole by hard, steady push against bolt head.</td>
</tr>
<tr>
<td>Tight-drive fit</td>
<td>Requires bolt to be driven into the hole with sharp blows from a 12- or 14-ounce hammer.</td>
</tr>
<tr>
<td>Interference fit</td>
<td>Bolt diameter is larger than reamed diameter of hole. The component with the hole must be heated to expand the hole—the bolt is chilled with dry ice to shrink it. When bolt is installed, and the component and the bolt reach the same temperature, the bolt cannot be moved.</td>
</tr>
</tbody>
</table>

Screws

Normally differ from a bolt because they have a slot or recess in the head so they can be turned with a screwdriver rather than a wrench, and their threads extend all of the way to the head. However, this distinction has been blurred: a number of high-strength bolts also exist with flush heads so they can be installed on the outside of an aircraft structure and not cause wind resistance.
THE AVIATION STANDARD

AVIATION MECHANIC HANDBOOK

Based on the original text by DALE CRANE
Edited by TERRY MICHERHUIZEN

7TH EDITION

Handy toolbox-size reference for mechanics, aircraft owners, and pilots. All the information critical to maintaining an aircraft.

Your single source for:

- Mathematics, conversions, formulas
- Aircraft nomenclature, controls, system specs
- Material and tool identifications
- Hardware sizes and equivalents
- Inspections, corrosion detection and control
- Frequently used scales, charts, diagrams, and much more
- Index included

Aviation Supplies & Academics, Inc.
7005 132nd Place SE
Newcastle, Washington 98059
asa2fly.com

ASA-MHB-7-PD