Contents

Foreword xi
Preface xii

1. Physics 1
 Newton’s Laws 1 Newton’s First Law 1 Newton’s Second Law 2
 Newton’s Third Law 3 Conclusion 3
 Mathematical Terms 3 Velocity 3 Acceleration 3 Equilibrium 4
 Gravitational Forces 4 Centripetal Force 5
 Vector Quantities 5
 Moments and Couples 6 Moments 6 Couples 6
 Energy 6 Pressure Energy 6 Dynamic (Kinetic) Energy 7
 Units of Measurement 7
 Graphs 8
 Review 1 10

2. The Atmosphere 11
 Atmospheric Pressure 11 Air Temperature 11 Combined Effects 12
 Moisture Content 12 The Standard Atmosphere (ISA) 12
 Pressure Altitude 13 Density Altitude 13 Summary 13
 Operational Considerations 14
 Review 2 14

3. Lift 15
 Definitions 15
 The Lift Formula 18 Dynamic Energy 20 Summary 20 Indicated
 Airspeed and True Airspeed 21
 Center of Pressure 22
 Aerodynamic Center 24
 Review 3 26

4. Drag 27
 Types of Drag 28 Parasite Drag 28 Profile Drag 29 Form Drag 29
 Skin Friction 30 Induced Drag 31 Tip Vortices 33 Effect of
 Airspeed on Induced Drag 34 Effect of Aspect Ratio 34
 Methods to Reduce Induced Drag 35 Wash-out 35 Tip Design 35
 Total Drag Curve 36
 Conclusion 37
 Review 4 38

5. Lift/Drag Ratio 39
 Best (or Maximum) L/D Ratio 40
 Other Factors Influencing L/D Ratio 41
 Conclusion 41
 Review 5 42
6. Aerodynamic Forces 43
 Definitions 43
 Rotor Systems 45
 Introduction 45
 Rotational Airflow (Vr) 46
 Blade Angle of Attack 46
 Induced Flow 47
 Airflow Caused by Aircraft Velocity 48
 The Forces 48 Total Rotor Thrust 49 Rotor Drag (Torque) 49 Angle of Attack and the Rotor Thrust/Rotor Drag Ratio 50 Induced Flow and the Rotor Thrust/Rotor Drag Ratio 50
 Inflow Angle 51
 The Force Opposing Weight 52
 Factors Influencing Rotor Thrust 53 Air Density 53 Rotor rpm 54
 Blade Angle 54 Disc Area 54 Significant Aspects of High Inertia Blades 55
 Conclusion 55
 Review 6 56

7. Rotor Blade Airfoils 57
 Drag Factors 57
 Stress Factors 58
 Effect of Local Air Velocity on Blade Design 59
 Blade Tip Speeds 59
 Development in Blade Design 60
 Review 7 60

8. Rotor Drag (Torque) 61
 Disc Loading Changes 61
 Changes in Gross Weight 62
 Changes in Altitude 62
 Changes in Configuration 62
 Ground Effect 62
 Translational Lift 64
 Summary 65
 Review 8 66

9. The Anti-Torque Rotor 67
 Anti-Torque Functions 67 Mechanical Considerations 68 Anti-Torque and Demand for Power 68 Effect of the Wind 69
 Translating Tendency (Tail Rotor Drift) 70
 Rolling Tendency 71
 Tail Rotor Flapping 71
 Shrouded Tail Rotors 72
 Tail Rotor Design 72
 Other Methods of Anti-Torque Control 72 Strakes and Anti-Torque 73
 Tail Rotor Failure 74
 Review 9 76
10. Controls and Their Effects 77

Collective Control 77
Cyclic Control 78
Effect of Controls on Blade Lead-Lag Behavior 78 Mean Lag Position 78
The Four Main Causes of Movement about the Lead/Lag Hinge 78
Conservation of Angular Momentum (Coriolis Effect) 78 Hookes Joint Effect 79 Periodic Drag Changes 80 Random Changes 80
Review 10 80

11. The Hover 81

Hover Our-of Ground Effect (OGE) and In-Ground Effect (IGE) 81
Factors Affecting Ground Effect 82 Helicopter Height Above Ground Level 82 Density Altitude and Gross Weight 82 Gross Weight and Power Required 83 Nature of the Surface 83 Slope 83 Wind Effect 84
Confined Areas – Recirculation 84 Factors Determining the Degree of Recirculation 84
Over-Pitching 85
Review 11 86

12. Forward Flight 87

Three Basic Aspects of Horizontal Flight 89 Tilting the Disc with Cyclic 89 An Alternate Explanation of Cyclic Action 91 Dissymmetry of Lift 91 Eliminating Dissymmetry of Lift 92 Blow-Back (Flap Back) 94 Blow-back (Flap-Back) When Using Collective 95
Summary 96
Designs that Reduce Flapping Amplitude 96 Delta-3 Hinges 96 Offset Pitch Horns 97
Reverse Flow 98
Translational Lift 99
Transverse Flow Effect 101
Review 12 102

13. Power, Range and Endurance 103

Power 103 Ancillary Power 103 Profile Power 103 Induced Power 104 Parasite Power 104
The Total Horsepower Required Curve (the HPR) 105 Altitude 106 Weight 107 Slingload and Parasite Drag Items 107
Flying the Helicopter for Range 108 Effect of the Wind 109 Engine Considerations 110 Range Summary 110
Flying the Helicopter for Endurance 111 Endurance Summary 111
Review 13 112
14. Climbing and Descending 113

Climbing 113
The Horsepower Available Curve (The HPA) 114
Factors Affecting the Horsepower Available Curve 114 Altitude 114
Density Altitude 115 Leaning the Mixture 115 Collective Setting 115
Rate of Climb 115
Angle of Climb 116
Effect of Lowering Horsepower Available Curve 116 Summary 117
Effect of the Wind 117
Climb Performance Summary 118
Descending 118
Angle of Descent 119
Effect of the Wind on Descents 120
Descent Performance Summary 121

Review 14 122

15 Maneuvers 123

Turning 123
Rate of Turn 124
Radius of Turn 125
Rate and Radius Interaction 125
The Steep Turn 125 Power Requirement 126
The Climbing Turn 127
The Descending Turn 127
Effect of Altitude on Rate of Turn and Radius of Turn 127
Effect of Changes in Gross Weight on Rate and Radius 128
Effect of the Wind on Rate and Radius 128
Effect of the Wind on Indicated Airspeed and Translational Lift 129
Effect of Slingloads 130
Effect of Slipping and Skidding 131
Pull-Out from a Descent 131

Review 15 132

16. The Flare 133

Initial Action 133
Flare Effects 133 Thrust Reversal 134 Increasing Total Rotor Thrust
Increasing Rotor rpm 134 Management of Collective 135

Review 16 136

17. Retreating Blade Stall 137

Effect of Increasing Airspeed on Stall Angle 137
Factors Affecting the Advancing Blade 138
Symptoms of Retreating Blade Stall 138
Recovery 139
Factors Influencing V_{ne} 140
Conclusion 141

Review 17 142
18 **Autorotation** 143

- Initial Aircraft Reaction 143
- The Lift/Drag Ratio and Forces Involved 143
- The Stalled Region 144
- The Driven (Propeller) Region 145
- The Driving (Autorotative) Region 145
- Combined Effects of All Regions 146

Autorotation and Airspeed 148
- Combined Effect 149
- Effect of Forward Speed on the Three Regions 150
- Effect of Airspeed Changes on Rotor rpm 150

Autorotation Range and Endurance 150
- Effect of Altitude on Range and Endurance 151
- Effect of Gross Weight on Range and Endurance 151

Autorotation and Airspeed 148
- Combined Effect 149
- Effect of Forward Speed on the Three Regions 150
- Effect of Airspeed Changes on Rotor rpm 150

Autorotation Range and Endurance 150
- Effect of Altitude on Range and Endurance 151
- Effect of Gross Weight on Range and Endurance 151

19 Hazardous Flight Conditions 157

- Vortex Ring State 157
- Effect on the Root Section of the Blade 158
- Effect on the Tip Section of the Blade 158
- Flight Conditions Likely to Lead to Vortex Ring State 160
- Symptoms of Vortex Ring State 160
- Recovery from Vortex Ring State 161
- Tail Rotor Vortex Ring State 161
- Ground Resonance 162
- Causes of Ground Resonance 162
- Factors that May Cause Ground Resonance 163

- Rotor Head Vibrations 163
- Fuselage Factors 163
- Ground Resonance Recovery Action 164
- Blade Sailing 164
- Dynamic Rollover 165
- Factors Influencing the Critical Angle 165
- Cyclic Limitations 166
- Mast Bumping 167
- Avoiding Mast Bumping 169
- Recovery from Low and Zero g 169
- Mast Bumping Summary 169
- Exceeding Rotor rpm Limits 169
- Reasons for High Rotor rpm Limits 169
- Engine Considerations 169
- Blade Attachment Stress 169
- Sonic Problems 170
- Reasons for Low Rotor rpm Limits 170
- Insufficient Centrifugal Force 170
- Reduced Tail Rotor Thrust 170
- Rotor Stalls 170
- Recovery from Low Rotor rpm 171

Review 18 156
20. Helicopter Design and Components 173
Transmission 173
Main Rotor Gear Box 173
Freewheeling Unit 174
Drive Shafts 174
Tail Rotor Gear Box 174
Rotor Brake 174
Clutch 174
Chip Detectors 175
Governors 175
Swashplate (Control Orbit) 176 Phase Lag 177 Advance Angle 177
Rotor Blades 179 Chordwise Blade Balancing 180 Spanwise Blade Balancing 180
Trim Controls 180 Bias Control 180 Electronic Servo Systems 180
Tail Rotors 181 Tail Rotor Flapping 181 Tail Rotor Rotation 181
Helicopter Vibrations 181 Types of Vibrations 182 Vertical Vibrations 182 Lateral Vibrations 183 Combined Vertical and Lateral Vibrations 183 High Frequency Vibrations 183 Engine Vibrations 184 Remedial Action by the Pilot 184
Control Functions 184 Collective 184 Twist Grip Throttle 184
Engine Cooling 185
Carburetor Icing 185
DUAL Tachometer Instruments 186
Rotor Stabilizing Design Systems 187 The Bell Stabilizing Bar 187 The Hiller System 187 The Underslung Rotor System 188
Rotorless Anti-Torque System 189
Advantages of the NOTAR System 189
Components 189 Air Intake 190 Engine-driven Fan 190 Slots 190 Direct Jet Thruster 191 Vertical Stabilizers 191
Undercarriages 192 Skids 192 Wheels 192 Oleo (Shock) Struts 193
Review 20 195

21. Stability 195
Static Stability 195
Dynamic Stability 195
Stability in the Three Planes of Movement 196
Longitudinal Stability 197 Longitudinal Stability Aids 197
Lateral Stability 198
Directional Stability 199 Directional Stability Aids 200 Cross Coupling with Lateral Stability 200
Offset Flapping Hinges 200
Review 21 202

22. Special Helicopter Techniques 203
Crosswind Factors 203 Lateral Blow-back (Flap-back) 203 Weathervane Action 203 Effect on tail Rotor Thrust 203
Different Types of Takeoffs and Landings 204
Downwind Takeoffs and Landings 204
Running Takeoff 204
Cushion-Creep Takeoff 205
Confined Area Takeoff (Towering Takeoff) 205
Maximum Performance Takeoff 206
Running Landing 206
The Zero-Speed Landing 207
Operations on Sloping Surfaces 207
Sling Operations 208
The Equipment 208 The Sling 210
Ground Handling 211
Flying Techniques 212 Snagging of Cable or Strap on the Undercarriage before Liftoff 212 Never-Exceed Speed \((V_{ne}) \) 213
Preflight Rigging 213 Length of Cable or Strap 213 Number and Type of Slings 213 Nets 213 Pallets 214 Load Center of Gravity 214 Pilot Action in Case of Helicopter Oscillation 214
The Approach 215
Types of Slingload 215 Horizontal Loads 215 Unusual Loads 216
Conclusion 219

Review 22 220

23. Mountain Flying 221
Updrafts and Downdrafts 221
Thermal Currents 223
Katabatic and Anabatic Winds 224
Mechanical Turbulence 224 Wind Strength 225 Size and Shape of Mountains 226 Stability or Instability of Air 226 Wind Direction Relative to Mountain Orientation 227
Summary 227
Valley Flying 227
Ridgeline Flying 228
The “Standard” Mountain Approach 228
Survival Equipment 235
Review 23 236

24. Helicopter Icing 237
Ice Accretion 237 Influence of Temperature and Drop Size 237 Water Content of Air 238 Kinetic Heating 238 Shape of Airfoils and Other Aircraft Components 238 Mechanical Flexion and Vibration 239
Ice Formation on Blades at Different Temperatures 239
Electrical Anti-Icing 240
Consequences of Ice Accretion 240
Engine Intake Icing 241
Review 24 242
25. Helicopter Performance 243
 Helicopter Performance Factors 243
 Altitude 243
 Pressure Altitude 244
 Density Altitude 246 Combined Effect of Pressure and Density
 Altitude 247
 Moisture Content of Air 248
 Aircraft Gross Weight 248
 External Stores 248
 The Wind 249
 Power Check 249
 Performance Graphs 250 Units of Measurement 251
 Hover Ceiling Graph 252
 Takeoff Distance over a 50-Foot Obstacle 254
 Turbine Engine Power Check 256
 Maximum Gross Weight for Hovering 258
 Climb Performance 260
 Range 261
 Endurance 262
 Review 25 263

26. Weight and Balance 265
 Definitions 265
 Weight 267
 Balance 267
 Beyond the Center of Gravity Limits 268 Excessive Forward Center
 of Gravity 268 Excessive Aft Center of Gravity 269 Summary 269
 Calculating the Center of Gravity Position 269 To Calculate the
 Longitudinal Center of Gravity Position 271 To Calculate the
 Lateral Takeoff Center of Gravity Position 271 Summary 273
 Effect of External Loads on Center of Gravity Position 273
 Conclusion 274
 Review 26 274

Appendix 1 — Sample Examination 277

Appendix 2 — Temperature Conversion 287

Appendix 3 — Altimeter Setting Conversion 289

Appendix 4 — Review and Examination Answers 291

Glossary — 295

Index — 299
If you want to fully understand the principles of helicopter aerodynamics, you must understand certain terms, laws and theorems in physics. This chapter deals with principles of physics that have a direct bearing on helicopter flight.

Newton’s Laws

Sir Isaac Newton theorized three basic laws, all of which pertain to flying helicopters.

Newton’s First Law

All bodies at rest or in uniform motion along a straight line will continue in that state unless acted upon by an outside force.

Newton’s first law defines the principle of *inertia*, which means that bodies tend to keep doing what they are doing. If they are “doing” anything at all while in motion, the path the body travels is a straight line. If change is required, then a force must be applied to achieve that change. For example, getting a locomotive moving down a track requires a force which would be greater than the force required to get a small car rolling along a level road. The fundamental physical difference between a locomotive and a compact car is their mass. Mass means the amount (or quantity) of matter in a body; it is directly proportional to inertia. Thus to change the state of rest of any body, a force is required that must be proportional to the mass of that body. The larger the mass and thus the greater its inertia, the greater the force required.

A body’s inertia does not change unless its mass changes. A helicopter at sea level or at altitude, flown fast or slow, has the same inertia, provided its mass does not change.

The term inertia is often confused with momentum. Momentum considers not only the mass of the body concerned, but also the velocity at which it travels. Bodies at rest cannot have momentum, although they do have inertia. For a given mass within a body, the faster it travels, the greater its momentum.

Momentum is formulated as:

\[Momentum = m \times V \]

where \(m \) represents mass and \(V \) represents velocity.
When a helicopter travels faster, its momentum increases and a greater force is required to bring it to a halt. Alternatively, if its velocity stays the same, but there are more people on board, then momentum increases, this time because of the increase in mass and again, a greater force is required to bring the aircraft to a stop.

| The greater the mass of a body, the greater its inertia and the greater the force required to change its state of rest or uniform motion along a straight line. |

This principle applies no matter where the body is or whether it is moving fast, slow or not at all.

For a given mass, however, if it has velocity it will have momentum as well as inertia.

| The greater the velocity, the greater the momentum and the greater the force required to change its state of uniform motion along a straight line. |

In short, all bodies have mass and inertia, but not all bodies have momentum. Only those bodies that have velocity have momentum, too.

There are many instances in everyday flying where inertia and momentum play an important part in operating a helicopter. Once you understand their influences you can better anticipate the magnitude of control inputs needed to make required changes within a safe distance or time. For example, if a pilot makes an approach into a confined area when the aircraft is at its maximum gross weight and at a high rate of descent, then the helicopter’s inertia is high because of its large mass and its momentum is high because of its high vertical velocity. The pilot must arrest the momentum downward with another force, usually involving power, to prevent the ground impact from being the force that arrests the momentum!

Newton’s Second Law

| Force is proportional to Mass x Acceleration. |

To accelerate a body at a given rate, the force used must be proportional to the mass of that body. Alternatively, if a given mass must be accelerated at a higher rate, then the force required must be greater.

The accelerated air (the induced flow) through a rotor system, which produces the required force for sustained flight, is a good example of this law in action. If the amount of air is increased, then its mass is greater, and as a result the acceleration required can be reduced to provide the same upward force. Alternatively, if the aircraft is heavier and the force required to keep it airborne is greater, then for the same mass of air processed through the rotor disc, its acceleration needs to be greater.
Newton’s Third Law

For every action there is an equal and opposite reaction.

Newton’s third law is often misused by assuming that the word action means force. One force is not always equally opposed by another. Only when no acceleration takes place, either in terms of speed or direction, could one say that all forces are equal and opposite and only then could one say that to each force there is an equal and opposite force.

When a helicopter hovers at precisely one height, all actions (and in this case “forces”) have equal and opposite reactions, but this applies only so long as there is no accelerated movement up/down, left/right or fore/aft.

Conclusion

Newton’s laws have a fundamental influence on all aspects of helicopter flight. Throughout this book many of these aspects can be referenced to this chapter and it is therefore important that you have a good understanding of the principles.

Mathematical Terms

In explaining Newton’s laws (and those that follow) everyday words are used, such as velocity and acceleration. Although these words appear to be simple and straightforward, in mathematical terms they are somewhat more complex and may require re-learning.

Velocity

Velocity means: speed and direction. The problem here is the inclusion of the term “direction” as an integral part of the word velocity. To say that one’s car, traveling at 50 mph, has a velocity of 50 mph is wrong unless a direction value is included. You could only say that a car has a velocity of 50 mph if the vehicle travels at that speed in a given direction, for example, due north. Although this aspect is not of earth-shattering importance on its own merits, the issue is vital when other terms are considered that relate to velocity, such as acceleration.

Acceleration

Acceleration is simply the rate of change of velocity. If the term velocity is understood correctly, it is clear that by changing either the speed part of velocity or the direction part of velocity, one has changed velocity and because of that, acceleration has been established.

Imagine a helicopter maintaining exactly 50 knots in a steady turn to the right. Although the aircraft's speed is unchanged, its direction is not; in fact its direction is constantly changing. The aircraft is accelerating because of this continuous change in direction.

Understand then, that by altering either the speed of an object or its direction, or both, the object is accelerating.

In this context, slowing down (commonly referred to as deceleration) is also acceleration, but in a negative sense.
Equilibrium

Equilibrium means: a state of zero-acceleration. When an object travels in a straight line at a constant speed, its velocity is constant (since there is no change in either speed or direction). It can then be said that the object is in equilibrium. If an object travels at a steady 50 mph on a curve, however, it must be accelerating because its direction is constantly changing and it can then not be in equilibrium.

The terms *equilibrium* and *balanced forces* are often confused. Whenever a body travels at a steady speed on a curve, it cannot possibly be in equilibrium because direction is continuously changing. If the curve on which it travels has a perfect and constant radius, however, then all the forces acting on it will be equal and opposite (this assumes there is centrifugal force). Thus it is possible to have balanced forces, yet no equilibrium. To illustrate, a helicopter doing perfect steep turns at a constant altitude, speed and radius is not in equilibrium, but forces acting upon the aircraft are balanced.

Gravitational Forces

Nature's laws dictate that an attractional force exists between all masses. The greater the masses, the greater the force of attraction is between them. In addition to the size of the masses, the distance between them also has an influence: the greater the distance between masses, the less the attractional force.

This law is not always easy to see because any two adjacent masses, or objects, do not always move towards each other. Just because that movement is not evident, however, does not mean that the attractional force isn’t there. In most cases, the drag between the objects and the surface they are resting on is greater than the force of attraction between them and so movement is prevented.

The earth is essentially an object of great mass that exerts a large attractional force on any other object in its proximity. The result of this attractional force on any given mass, or object, is called weight. The earth’s gravitational force originates from its core and acts on the core of any other mass nearby. The farther the object from the earth’s core, the less affected it is by the earth’s gravity. Since the result of this attraction is called weight, it follows that the mass further removed must have less weight. Indeed, when the distance between earth and a body becomes so large that the attractional force between them becomes negligible, the body is said to be weightless. To say in this instance that it has no weight at all would be technically incorrect because there is still an earth attractional force, but it is now so small as to be unrecognizable.

Earth attractional force has the symbol g, while the mass it acts on has the symbol m. Thus weight can be formulated as:

$$ Weight = m \times g $$

This means that the greater the mass for a given “g” the greater the weight or, the greater the distance away from earth for a given m, the less the weight. Remember that mass does not vary if the number of molecules is not altered, but the weight of this mass will change with significant changes in altitude.
Principles of Helicopter Flight
Second Edition

Principles of Helicopter Flight, by Walter J. Wagendonk, explains the complexities of helicopter flight in clear, easy-to-understand terms. The worldwide helicopter industry has waited a long time to see a manual of this caliber.

This Second Edition adds discussions on the NOTAR system and strakes, as well as the frequently misunderstood principles of airspeed and high altitude operations. Chapter reviews and a concluding practice exam ensure your grasp of the principles learned from this book.

Helicopter pilots need to thoroughly understand the consequences of their actions, and base them upon sound technical knowledge. This textbook provides the background knowledge explaining why the helicopter flies and, more importantly, why it sometimes doesn’t. It examines the aerodynamic factors associated with rotor stalls, mast bumping, wind effect, as well as maneuvering flight to include the hover, forward flight, the flare, and autorotation. Helicopter design and components, performance, and weight and balance is covered, along with special techniques such as different types of takeoffs and landings, operating on sloping surfaces, sling operations, mountain flying, and helicopter icing. Technical knowledge and sound handling are the ingredients that make a pilot safe.

For the student learning to fly helicopters in the 21st century, this book is one of the essential keys to flight.

“Wal” Wagendonk served in the Royal New Zealand Air Force, retiring as an A-2 instructor in 1960. After working with the Nelson Aero Flight Club as Manager and Chief Flight Instructor, Wal, with his wife Ann, formed the Nelson Aviation College in Motueka, which blossomed into one of New Zealand’s best known theory and flight training establishments. Nelson Aviation College became the first “approved” school to conduct both fixed-wing and helicopter courses, and many experienced helicopter pilots currently flying all over the world started their basic training under Wal’s careful instruction.

Wal was born in The Netherlands, and emigrated to New Zealand at age 20. Having retired in 1990, Wal and Ann now reside in the Bay of Plenty on New Zealand’s North Island.